Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Tabela de integrais Completa, Notas de estudo de Engenharia Civil

Tabela com todas as principais integrais

Tipologia: Notas de estudo

2010

Compartilhado em 30/05/2010

cristiano-junior-4
cristiano-junior-4 🇧🇷

1 documento

1 / 5

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Table of Integrals
Basic Forms
Zxndx =1
n+ 1xn+1 +c(1)
Z1
xdx = ln x+c(2)
Zudv =uv Zvdu (3)
Z1
ax +bdx =1
aln |ax +b|+c(4)
Integrals of Rational Functions
Z1
(x+a)2dx =1
x+a+c(5)
Z(x+a)ndx =(x+a)n+1
n+ 1 +c, n 6=1 (6)
Zx(x+a)ndx =(x+a)n+1((n+ 1)xa)
(n+ 1)(n+ 2) +c(7)
Z1
1 + x2dx = tan1x+c(8)
Z1
a2+x2dx =1
atan1x
a+c(9)
Zx
a2+x2dx =1
2ln |a2+x2|+c(10)
Zx2
a2+x2dx =xatan1x
a+c(11)
Zx3
a2+x2dx =1
2x21
2a2ln |a2+x2|+c(12)
Z1
ax2+bx +cdx =2
4ac b2tan12ax +b
4ac b2+C(13)
Z1
(x+a)(x+b)dx =1
baln a+x
b+x, a 6=b(14)
Zx
(x+a)2dx =a
a+x+ ln |a+x|+C(15)
Zx
ax2+bx +cdx =1
2aln |ax2+bx +c|
b
a4ac b2tan12ax +b
4ac b2+C(16)
Integrals with Roots
Zxadx =2
3(xa)3/2+C(17)
Z1
x±adx = 2x±a+C(18)
Z1
axdx =2ax+C(19)
Zxxadx =2
3a(xa)3/2+2
5(xa)5/2+C(20)
Zax +bdx =2b
3a+2x
3ax +b+C(21)
Z(ax +b)3/2dx =2
5a(ax +b)5/2+C(22)
Zx
x±adx =2
3(x2a)x±a+C(23)
Zrx
axdx =px(ax)
atan1px(ax)
xa+C(24)
Zrx
a+xdx =px(a+x)
aln x+x+a+C(25)
Zxax +bdx =
2
15a2(2b2+abx + 3a2x2)ax +b+C(26)
Zpx(ax +b)dx =1
4a3/2h(2ax +b)pax(ax +b)
b2ln
ax+pa(ax +b)
i+C(27)
Zpx3(ax +b)dx =b
12ab2
8a2x+x
3px3(ax +b)
+b3
8a5/2ln
ax+pa(ax +b)
+C(28)
«2009. From http://integral-table.com, last revised February 17, 2010. This material is provided as is without warranty or representation
about the accuracy, correctness or suitability of this material for any purpose. Some restrictions on use and distribution may apply, including the
terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. See the web site for details. The formula numbers
on this document may be different from the formula numbers on the web page.
1
pf3
pf4
pf5

Pré-visualização parcial do texto

Baixe Tabela de integrais Completa e outras Notas de estudo em PDF para Engenharia Civil, somente na Docsity!

Table of Integrals

Basic Forms

x n dx =

n + 1

x n+

  • c (1)

x

dx = ln x + c (2)

udv = uv −

vdu (3)

ax + b

dx =

a

ln |ax + b| + c (4)

Integrals of Rational Functions

(x + a)^2

dx = −

x + a

  • c (5)

(x + a) n dx =

(x + a) n+

n + 1

  • c, n 6 = − 1 (6)

x(x + a) n dx =

(x + a) n+ ((n + 1)x − a)

(n + 1)(n + 2)

  • c (7)

1 + x^2

dx = tan − 1 x + c (8)

a^2 + x^2

dx =

a

tan − 1 x a

  • c (9)

x

a^2 + x^2

dx =

ln |a 2

  • x 2 | + c (10)

x 2

a^2 + x^2

dx = x − a tan

− 1 x a

  • c (11)

x^3

a^2 + x^2

dx =

x 2 −

a 2 ln |a 2

  • x 2 | + c (12)

ax^2 + bx + c

dx =

4 ac − b^2

tan − 1 2 ax^ +^ b √ 4 ac − b^2

+ C (13)

(x + a)(x + b)

dx =

b − a

ln

a + x

b + x

, a 6 = b (14)

x

(x + a)^2

dx =

a

a + x

  • ln |a + x| + C (15)

x

ax^2 + bx + c

dx =

2 a

ln |ax

2

  • bx + c|

b

a

4 ac − b^2

tan − (^1) √^2 ax^ +^ b 4 ac − b^2

+ C (16)

Integrals with Roots

x − adx =

(x − a) 3 / 2

  • C (17)

x ± a

dx = 2

x ± a + C (18)

a − x

dx = − 2

a − x + C (19)

x

x − adx =

a(x − a) 3 / 2

(x − a) 5 / 2

  • C (20)

ax + bdx =

2 b

3 a

2 x

3

ax + b + C (21)

(ax + b) 3 / 2 dx =

5 a

(ax + b) 5 / 2

  • C (22)

x √ x ± a

dx =

(x ∓ 2 a)

x ± a + C (23)

∫ √^

x

a − x

dx = −

x(a − x)

− a tan − 1

x(a − x)

x − a

+ C (24)

∫ √^

x

a + x

dx =

x(a + x)

− a ln

[√

x +

x + a

]

+ C (25)

x

ax + bdx =

15 a^2

(− 2 b 2

  • abx + 3a 2 x 2 )

ax + b + C (26)

x(ax + b)dx =

4 a^3 /^2

[

(2ax + b)

ax(ax + b)

−b 2 ln

∣a

x +

a(ax + b)

]

+ C (27)

x^3 (ax + b)dx =

[

b

12 a

b 2

8 a^2 x

x

3

]

x^3 (ax + b)

b^3

8 a^5 /^2

ln

∣a

x +

a(ax + b)

∣ +^ C^ (28)

∗« 2009. From http://integral-table.com, last revised February 17, 2010. This material is provided as is without warranty or representation

about the accuracy, correctness or suitability of this material for any purpose. Some restrictions on use and distribution may apply, including the

terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. See the web site for details. The formula numbers on this document may be different from the formula numbers on the web page.

x^2 ± a^2 dx =

x

x^2 ± a^2

a 2 ln

∣x^ +^

x^2 ± a^2

∣ +^ C^ (29)

a^2 − x^2 dx =

x

a^2 − x^2

a 2 tan − 1 x √ a^2 − x^2

+ C (30)

x

x^2 ± a^2 dx =

x

2 ± a

2 )^3 /^2

+ C (31)

x^2 ± a^2

dx = ln

∣x^ +^

x^2 ± a^2

∣ +^ C^ (32)

a^2 − x^2

dx = sin − 1 x a

+ C (33)

x √ x^2 ± a^2

dx =

x^2 ± a^2 + C (34)

x √ a^2 − x^2

dx = −

a^2 − x^2 + C (35)

x^2 √ x^2 ± a^2

dx =

x

x^2 ± a^2

a 2 ln

∣x^ +^

x^2 ± a^2

∣ +^ C^ (36)

ax^2 + bx + cdx =

b + 2ax

4 a

ax^2 + bx + c

4 ac − b^2

8 a^3 /^2

ln

∣ 2 ax + b + 2

a(ax^2 + bx+c)

∣ + C (37)

x

ax^2 + bx + c =

48 a^5 /^2

a

ax^2 + bx + c

3 b 2

  • 2abx + 8a(c + ax 2 )

+3(b 3 − 4 abc) ln

∣b^ + 2ax^ + 2

a

ax^2 + bx + x

ax^2 + bx + c

dx =

a

ln

∣ 2 ax + b + 2

a(ax^2 + bx + c)

∣ + C (39)

x √ ax^2 + bx + c

dx =

a

ax^2 + bx + c

b

2 a^3 /^2

ln

∣ 2 ax + b + 2

a(ax^2 + bx + c)

∣ + C (40)

Integrals with Logarithms

ln axdx = x ln ax − x + C (41)

ln ax

x

dx =

(ln ax)

2

  • C (42)

ln(ax + b)dx =

x +

b

a

ln(ax + b) − x + C, a 6 = 0 (43)

ln

a 2 x 2 ± b 2

dx = x ln

a 2 x 2 ± b 2

2 b

a

tan − 1 ax b

− 2 x + C (44)

ln

a 2 − b 2 x 2

dx = x ln

ar − b 2 x 2

2 a

b

tan − 1 bx a

− 2 x + C (45)

ln

ax 2

  • bx + c

dx =

a

4 ac − b^2 tan − (^1) √^2 ax^ +^ b 4 ac − b^2

− 2 x +

b

2 a

  • x

ln

ax 2

  • bx + c

+ C (46)

x ln(ax + b)dx =

bx

2 a

x 2

x

2 −

b 2

a^2

ln(ax + b) + C (47)

x ln

a 2 − b 2 x 2

dx = −

x 2

x 2 −

a 2

b^2

ln

a 2 − b 2 x 2

+ C (48)

Integrals with Exponentials

e ax dx =

a

e ax

  • C (49)

xe

ax dx =

a

xe

ax

i

π

2 a^3 /^2

erf

i

ax

+ C,

where erf(x) =

π

∫ (^) x

0

e −t^2 dtet (50)

xe x dx = (x − 1)e x

  • C (51)

xe ax dx =

x

a

a^2

e ax

  • C (52)

x 2 e x dx =

x 2 − 2 x + 2

e x

  • C (53)

csc xdx = ln

∣tan

x

2

∣ + C = ln | csc x − cot x| + C (85)

csc 2 axdx = −

a

cot ax + C (86)

csc 3 xdx = −

cot x csc x +

ln | csc x − cot x| + C (87)

csc n x cot xdx = −

n

csc n x + C, n 6 = 0 (88)

sec x csc xdx = ln | tan x| + C (89)

Products of Trigonometric Functions and Monomials

x cos xdx = cos x + x sin x + C (90)

x cos axdx =

a^2

cos ax +

x

a

sin ax + C (91)

x 2 cos xdx = 2x cos x +

x 2 − 2

sin x + C (92)

x 2 cos axdx =

2 x cos ax

a^2

a 2 x 2 − 2

a^3

sin ax + C (93)

x n cosxdx = −

(i) n+ [Γ(n + 1, −ix)

n Γ(n + 1, ix)] + C (94)

x n cosaxdx =

(ia) 1 −n [(−1) n Γ(n + 1, −iax)

−Γ(n + 1, ixa)] + C (95)

x sin xdx = −x cos x + sin x + C (96)

x sin axdx = −

x cos ax

a

sin ax

a^2

+ C (97)

x 2 sin xdx =

2 − x 2

cos x + 2x sin x + C (98)

x 2 sin axdx =

2 − a^2 x^2

a^3

cos ax +

2 x sin ax

a^2

+ C (99)

x n sin xdx = −

(i) n [Γ(n + 1, −ix)

n Γ(n + 1, −ix)] + C (100)

Products of Trigonometric Functions and Exponentials

e

x sin xdx =

e

x (sin x − cos x) + C (101)

e bx sin axdx =

a^2 + b^2

e bx (b sin ax − a cos ax) + C (102)

e x cos xdx =

e x (sin x + cos x) + C (103)

e bx cos axdx =

a^2 + b^2

e bx (a sin ax + b cos ax) + C (104)

xe x sin xdx =

e x (cos x − x cos x + x sin x) + C (105)

xe x cos xdx =

e x (x cos x − sin x + x sin x) + C (106)

Integrals of Hyperbolic Functions

cosh axdx =

a

sinh ax + C (107)

e ax cosh bxdx =

 

eax

a^2 − b^2

[a cosh bx − b sinh bx] + C a 6 = b

e 2 ax

4 a

x

2

  • C a = b

sinh axdx =

a

cosh ax + C (109)

e ax sinh bxdx =

 

e ax

a^2 − b^2

[−b cosh bx + a sinh bx] + C a 6 = b

e^2 ax

4 a

x

2

  • C a = b

e

ax tanh bxdx =

   

e (a+2b)x

(a + 2b)

2 F 1

[

a

2 b

a

2 b

, −e 2 bx

]

a

e ax 2 F 1

[

a

2 b

, 1 , 1 E, −e 2 bx

]

  • C a 6 = b

eax^ − 2 tan−^1 [eax]

a

  • C a = b

tanh bxdx =

a

ln cosh ax + C (112)

cos ax cosh bxdx =

a^2 + b^2

[a sin ax cosh bx

+b cos ax sinh bx] + C (113)

cos ax sinh bxdx =

a^2 + b^2

[b cos ax cosh bx+

a sin ax sinh bx] + C (114)

sin ax cosh bxdx =

a^2 + b^2

[−a cos ax cosh bx+

b sin ax sinh bx] + C (115)

sin ax sinh bxdx =

a^2 + b^2

[b cosh bx sin ax−

a cos ax sinh bx] + C (116)

sinh ax cosh axdx =

4 a

[− 2 ax + sinh 2ax] + C (117)

sinh ax cosh bxdx =

b^2 − a^2

[b cosh bx sinh ax

−a cosh ax sinh bx] + C (118)