Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

solution of fundamentals of electric circuits 2nd ed sadiku, Notas de estudo de Engenharia Elétrica

solucionario do Sadiku

Tipologia: Notas de estudo

2010
Em oferta
50 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 03/12/2010

evertton-l-9
evertton-l-9 🇧🇷

5

(8)

2 documentos

1 / 1117

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Chapter 1, Solution 1
(a) q = 6.482x1017 x [-1.602x10-19 C] = -0.10384 C
(b) q = 1. 24x1018 x [-1.602x10-19 C] = -0.19865 C
(c) q = 2.46x1019 x [-1.602x10-19 C] = -3.941 C
(d) q = 1.628x1020 x [-1.602x10-19 C] = -26.08 C
Chapter 1, Solution 2
(a) i = dq/dt = 3 mA
(b) i = dq/dt = (16t + 4) A
(c) i = dq/dt = (-3e-t + 10e-2t) nA
(d) i=dq/dt =
1200 120
π
π
cos
t
pA
(e) i =dq/dt =
−+
et
t4
80 50 1000 50
(cos sin )
A
µ
t
Chapter 1, Solution 3
(a) C 1)(3t +=+= q(0)i(t)dt q(t)
(b) mC 5t)(t 2+=++= q(v)dt s)(2tq(t)
(c)
()
q(t) 20 cos 10t / 6 q(0) (2 sin(10 / 6) 1) Ct
π
πµ
=++=++
(d)
C 40t) sin 0.12t(0.16cos40e 30t- +=
+
=+= t)cos 40-t40sin30(
1600900
e10
q(0)t40sin10eq(t)
-30t
30t-
Chapter 1, Solution 4
()
mC 4.698==
=== ∫∫
π
π
π
06.0cos1
6
5
tπ6cos
6
5
dt t π 6 5sinidtq
10
0
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64
Discount

Em oferta

Pré-visualização parcial do texto

Baixe solution of fundamentals of electric circuits 2nd ed sadiku e outras Notas de estudo em PDF para Engenharia Elétrica, somente na Docsity!

(a) q = 6.482x

17 x [-1.602x

  • C] = -0.10384 C

(b) q = 1. 24x

18 x [-1.602x

  • C] = -0.19865 C

(c) q = 2.46x

19 x [-1.602x

  • C] = -3.941 C

(d) q = 1.628x

20 x [-1.602x

  • C] = -26.08 C

Chapter 1, Solution 2

(a) i = dq/dt = 3 mA

(b) i = dq/dt = (16t + 4) A

(c) i = dq/dt = (-3e

-t

  • 10e

-2t ) nA

(d) i=dq/dt = 1200 πcos 120 π t pA

(e) i =dq/dt = − +

e t

4 t ( 80 cos 50 1000 sin 50 t ) μ A

Chapter 1, Solution 3

(a) q(t)= ∫ i(t)dt+q(0)=(3t +1) C

(b) (t 5t) mC

2

q(t)= ∫ (2t+s)dt+q(v)= +

(c) q(t) = ∫20 cos (10t + π/ 6) + q(0) = (2sin(10 t + π/ 6) +1) μC

(d)

e (0.16cos40t 0.12sin40t) C

  • 30t =− +

= ∫ + = ( 30 sin 40 t- 40 cost)

10 e q(t) 10e sin 40 t q(0)

-30t

  • 30t

Chapter 1, Solution 4

=^ (^ − )^ =4.698mC

1 cos 0. 06 6

cos 6 πt 6

q idt 5sin 6 πtdt

10

0

( 1 e )mC μC 2

e 2

q idt e dtmC -

4

2

0

  • 2t -2t

Chapter 1, Solution 6

(a) At t = 1ms, = = = 40 mA 2

dt

dq i

(b) At t = 6ms, = = 0 mA dt

dq i

(c) At t = 10ms, = = =- 20 mA 4

dt

dq i

Chapter 1, Solution 7

25A, 6 t 8

  • 25A, 2 t 6

25 A, 0 t 2

dt

dq i

which is sketched below:

q t idt q dt t

t t

6 6

4

66

At t=10, q(10) = 180 – 54 = 126

For 10<t<15s,

q t idt q dt t

t t ( ) = + ( ) = ( − ) + = − +

10 12 126 12 246

10 10

At t=15, q(15) = -12x15 + 246 = 66

For 15<t<20s,

q t dt q

t ( ) = + ( )=

0 15

15

Thus,

q t

t

t

t

( )

.

,

=

− +

 

 

1 5

18 54

12 246

66

(^2) C, 0 < t < 6s

C, 6 < t < 10s

C, 10 < t < 15s

C 15 < t < 20s

The plot of the charge is shown below.

0 5 10 15 20

0

20

40

60

80

100

120

140

t

q(t)

=-2.486 kJ

sin 16 2 4

sin 8 1200 8

1200 ( 2 cos 8 t-1)dt(since,cosx 2 cos2x-1)

w vidt 1200 cos 4 tdt

2

0

2

0

2

2

0

(^22)

0

t t

Chapter 1, Solution 14

(a)

( ) ( )

= ( + − ) =2.131C

101 2 e 2

q idt 101 - e dt 10 t 2e

1

0

(^1) - 0.5t

0

  • 0.5t

(b) p(t) = v(t)i(t)

p(1) = 5cos2 ⋅ 10(1- e

-0. ) = (-2.081)(3.935)

= -8.188 W

Chapter 1, Solution 15

(a)

=− ( − ) =1.297C

  1. 5 e 1

e 2

q idt 3e dt

  • 2

2

0

(^2) 2t

0

  • 2t

(b)

90 e W

− 4 t = =−

p vi

6 e 5 30 e dt

5 di v

2t -2t

(c) =−22.5J −

3

0

(^3) - 4t

0

  • 4t e 4

w pdt -90 e dt

Since Σ p = 0

-30×6 + 6×12 + 3V 0 + 28 + 28×2 - 3×10 = 0

72 + 84 + 3V 0 = 210 or 3V 0 = 54

V 0 = 18 V

Chapter 1, Solution 21

. 8 nA

10 16 10 C/s 0.8 10 C/s 8

16 10 C/electron) photon

electron

8

sec

photon 4 10

11 19 - 8

11 19

= × × × = × =
⋅ ×
= ×

t

q i

Chapter 1, Solution 22

It should be noted that these are only typical answers.

(a) Light bulb 60 W, 100 W (b) Radio set 4 W

(c) TV set 110 W

(d) Refrigerator 700 W

(e) PC 120 W

(f) PC printer 18 W (g) Microwave oven 1000 W

(h) Blender 350 W

Chapter 1, Solution 23

(a) = = =12.5W 120

v

p i

(b) = =. × × × ⋅ = × kWh=1.125kWh 60

1 5 10 45 60 J 1.

3 w pt

(c) Cost = 1.125 × 10 = 11.25 cents

p = vi = 110 x 8 = 880 W

Chapter 1, Solution 25

hr 30 9 cents/kWh 21.6 cents 6

Cost =1.2kW× × × =

Chapter 1, Solution 26

(a) 80 mA

10h

08 A h i

(b) p = vi = 6 × 0.08 = 0.48 W

(c) w = pt = 0.48 × 10 Wh = 0.0048 kWh

Chapter 1, Solution 27

= ∫ =∫ = = × × =

= = ×

q idt 3dt 3 T 3 4 3600 43.2 kC

(a) LetT 4h 4 36005

T

0

[ ]

475.2 kJ

= × + × ×

×

dt 3600

05 t b) W pdt vidt 3 10

43600

0

2

0

T

0

t t

T

1.188 cents

= × =

kWh 9 cent 3600

Cost

c) W 475.2kWs, (J Ws)

= → =∫ = × × = 6 C

3 q idt 2000 3 10 dt

dq i

Chapter 1, Solution 34

(b) Energy = ∑ pt = 200 x 6 + 800 x 2 + 200 x 10 + 1200 x 4 + 200 x 2

= 10,000 kWh

(c) Average power = 10,000/24 = 416.67 W

Chapter 1, Solution 35

10.4 kWh

= = × + × + × × × + ×

a) W pt dt 400 6 1000 2 200 12 1200 2 400 2

( =433.3 W/h 24 h

10.4kW b)

Chapter 1, Solution 36

6,667 days

4 A

24h/ day

160000 h

0.001A

160Ah b) t

160 A h (a) i

Chapter 1, Solution 37

( )

. 901.2J

= =− × = −
= × − × =−

W 801 12

q 5 10 1602 10 801 C

20 19

qv

P = 10 hp = 7460 W

W = pt = 7460 × 30 × 60 J = 13.43 × 10

6 J

Chapter 1, Solution 39

=16.667 A
×

v

p p vi i

3

c d

b

a

9 A

i (^3) i (^2)

12 A

12 A

i (^1)

8 A

At node a, 8 = 12 + i 1 i 1 = - 4A

At node c, 9 = 8 + i 2 i 2 = 1A

At node d, 9 = 12 + i 3 i 3 = -3A

Chapter 2, Solution 9

Applying KCL,

i 1 + 1 = 10 + 2 i 1 = 11A 1 + i 2 = 2 + 3 i 2 = 4A

i 2 = i 3 + 3 i 3 = 1A

Chapter 2, Solution 10

At node 1, 4 + 3 = i 1 i 1 = 7A

At node 3, 3 + i 2 = -2 i 2 = -5A

-2A
3A
4A

i (^2) i (^1)

Applying KVL to each loop gives

-8 + v 1 + 12 = 0 v 1 = 4v

-12 - v 2 + 6 = 0 v 2 = -6v

10 - 6 - v 3 = 0 v 3 = 4v

-v 4 + 8 - 10 = 0 v 4 = -2v

Chapter 2, Solution 12

For loop 1, -20 -25 +10 + v 1 = 0 v 1 = 35v

For loop 2, -10 +15 -v 2 = 0 v 2 = 5v

For loop 3, -v 1 +v 2 +v 3 = 0 v 3 = 30v

+ 15v -

loop 3

loop 2

loop 1

20v

- - 25v + + 10v^ - + v^2 -

v

-

v

-

Chapter 2, Solution 13

2A
I 2 7A I 4
4A
I 1
3A I 3
  • 12V 1 v 2
    • 8V + - v 1

v 3 10V

For loop 1,

812 + v 2 = 0  → v 2 = 4 V

V

V

For loop 2,

v 3810 = 0  → v 3 = − 18

For loop 3,

v 1 + 12 + v 3 = 0  → v 1 = − 6

Thus,

v 1 = − 6 V , v 2 = 4 V , v 3 = − 18 V

Chapter 2, Solution 16

+ v 1 -

6V

+ loop 1

loop 2

12V
10V

v 1

-

+ v 2 -

Applying KVL around loop 1,

–6 + v 1 + v 1 – 10 – 12 = 0 v 1 = 14V

Applying KVL around loop 2,

12 + 10 – v 2 = 0 v 2 = 22V

+ v 1 -

+ 10V

12V
24V

loop 2

v

-

v

loop 1

+

It is evident that v 3 = 10V

Applying KVL to loop 2,

v 2 + v 3 + 12 = 0 v 2 = -22V

Applying KVL to loop 1,

-24 + v 1 - v 2 = 0 v 1 = 2V

Thus,

v 1 = 2V , v 2 = -22V , v 3 = 10V

Chapter 2, Solution 18

Applying KVL,

-30 -10 +8 + I(3+5) = 0
8I = 32 I = 4A

-Vab + 5I + 8 = 0 Vab = 28V

+ v 0 -

6 Ω 10A 2v

At the node, KCL requires that

0

0 10 2 v 4

v

    • = 0 v 0 = –4.444V

The current through the controlled source is

i = 2V 0 = -8.888A

and the voltage across it is

v = (6 + 4) i 0 = 10 11. 111 4

v (^0) =−

Hence,

p 2 vi = (-8.888)(-11.111) = 98.75 W

Chapter 2, Solution 23

The circuit is reduced to that shown below.

ix 1 Ω

  • vx -
6A 2 Ω 3 Ω

Applying current division,

i (^) x = A A v (^) x i

= =

2

2 1 3

( 6 ) 2 , (^1) x = 2 V

The current through the 1.2- Ω resistor is 0.5ix = 1A. The voltage across the 12-

resistor is 1 x 4.8 = 4.8 V. Hence the power is

Ω

p

v

R

= = = W

2 2 4 8

12

1 92

. .

Chapter 2, Solution 24

(a) I 0 = R 1 R 2

Vs

V 0 =− αI 0 ( R 3 R 4 )=

3 4

3 4

(^12)

0

R R

RR
R R
V

( 1 2 )( 3 4 )

0 3 4

R R R R

RR

Vs + +

V −

(b) If R 1 = R 2 = R 3 = R 4 = R,

R
V 2 R
V

S

0

α ⋅ =

α = α = 40

Chapter 2, Solution 25

V 0 = 5 x 10

  • x 10 x 10

3 = 50V

Using current division,

I 20 =

= x

0.1 A

V 20 = 20 x 0.1 kV = 2 kV

p 20 = I 20 V 20 = 0.2 kW