




























































































Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
solucionario do Sadiku
Tipologia: Notas de estudo
Oferta por tempo limitado
Compartilhado em 03/12/2010
5
(8)2 documentos
1 / 1117
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Em oferta
(a) q = 6.482x
17 x [-1.602x
(b) q = 1. 24x
18 x [-1.602x
(c) q = 2.46x
19 x [-1.602x
(d) q = 1.628x
20 x [-1.602x
Chapter 1, Solution 2
(a) i = dq/dt = 3 mA
(b) i = dq/dt = (16t + 4) A
(c) i = dq/dt = (-3e
-t
-2t ) nA
(d) i=dq/dt = 1200 πcos 120 π t pA
(e) i =dq/dt = − +
− e t
4 t ( 80 cos 50 1000 sin 50 t ) μ A
Chapter 1, Solution 3
(b) (t 5t) mC
2
(d)
e (0.16cos40t 0.12sin40t) C
10 e q(t) 10e sin 40 t q(0)
-30t
Chapter 1, Solution 4
1 cos 0. 06 6
cos 6 πt 6
q idt 5sin 6 πtdt
10
0
( 1 e )mC μC 2
e 2
q idt e dtmC -
4
2
0
Chapter 1, Solution 6
(a) At t = 1ms, = = = 40 mA 2
dt
dq i
(b) At t = 6ms, = = 0 mA dt
dq i
(c) At t = 10ms, = = =- 20 mA 4
dt
dq i
Chapter 1, Solution 7
25A, 6 t 8
25 A, 0 t 2
dt
dq i
which is sketched below:
q t idt q dt t
t t
6 6
4
66
At t=10, q(10) = 180 – 54 = 126
For 10<t<15s,
q t idt q dt t
t t ( ) = + ( ) = ( − ) + = − +
10 12 126 12 246
10 10
At t=15, q(15) = -12x15 + 246 = 66
For 15<t<20s,
q t dt q
t ( ) = + ( )=
0 15
15
Thus,
q t
t
t
t
( )
.
,
=
−
− +
1 5
18 54
12 246
66
(^2) C, 0 < t < 6s
C, 6 < t < 10s
C, 10 < t < 15s
C 15 < t < 20s
The plot of the charge is shown below.
0 5 10 15 20
0
20
40
60
80
100
120
140
t
q(t)
=-2.486 kJ
sin 16 2 4
sin 8 1200 8
1200 ( 2 cos 8 t-1)dt(since,cosx 2 cos2x-1)
w vidt 1200 cos 4 tdt
2
0
2
0
2
2
0
(^22)
0
t t
Chapter 1, Solution 14
(a)
( ) ( )
= ( + − ) =2.131C
101 2 e 2
q idt 101 - e dt 10 t 2e
1
0
(^1) - 0.5t
0
(b) p(t) = v(t)i(t)
p(1) = 5cos2 ⋅ 10(1- e
-0. ) = (-2.081)(3.935)
= -8.188 W
Chapter 1, Solution 15
(a)
=− ( − ) =1.297C
e 2
q idt 3e dt
2
0
(^2) 2t
0
(b)
90 e W
− 4 t = =−
p vi
6 e 5 30 e dt
5 di v
2t -2t
(c) =−22.5J −
3
0
(^3) - 4t
0
w pdt -90 e dt
Since Σ p = 0
72 + 84 + 3V 0 = 210 or 3V 0 = 54
Chapter 1, Solution 21
. 8 nA
10 16 10 C/s 0.8 10 C/s 8
16 10 C/electron) photon
electron
8
sec
photon 4 10
11 19 - 8
11 19
−
t
q i
Chapter 1, Solution 22
It should be noted that these are only typical answers.
(a) Light bulb 60 W, 100 W (b) Radio set 4 W
(c) TV set 110 W
(d) Refrigerator 700 W
(e) PC 120 W
(f) PC printer 18 W (g) Microwave oven 1000 W
(h) Blender 350 W
Chapter 1, Solution 23
(a) = = =12.5W 120
v
p i
(b) = =. × × × ⋅ = × kWh=1.125kWh 60
3 w pt
(c) Cost = 1.125 × 10 = 11.25 cents
p = vi = 110 x 8 = 880 W
Chapter 1, Solution 25
hr 30 9 cents/kWh 21.6 cents 6
Cost =1.2kW× × × =
Chapter 1, Solution 26
(a) 80 mA
10h
08 A h i
(b) p = vi = 6 × 0.08 = 0.48 W
(c) w = pt = 0.48 × 10 Wh = 0.0048 kWh
Chapter 1, Solution 27
q idt 3dt 3 T 3 4 3600 43.2 kC
(a) LetT 4h 4 36005
T
0
475.2 kJ
×
dt 3600
05 t b) W pdt vidt 3 10
43600
0
2
0
T
0
t t
T
1.188 cents
kWh 9 cent 3600
Cost
c) W 475.2kWs, (J Ws)
3 q idt 2000 3 10 dt
dq i
Chapter 1, Solution 34
= 10,000 kWh
(c) Average power = 10,000/24 = 416.67 W
Chapter 1, Solution 35
10.4 kWh
a) W pt dt 400 6 1000 2 200 12 1200 2 400 2
( =433.3 W/h 24 h
10.4kW b)
Chapter 1, Solution 36
6,667 days
24h/ day
160000 h
0.001A
160Ah b) t
160 A h (a) i
Chapter 1, Solution 37
( )
. 901.2J
−
q 5 10 1602 10 801 C
20 19
qv
P = 10 hp = 7460 W
W = pt = 7460 × 30 × 60 J = 13.43 × 10
6 J
Chapter 1, Solution 39
v
p p vi i
3
c d
b
a
i (^3) i (^2)
12 A
i (^1)
At node a, 8 = 12 + i 1 i 1 = - 4A
At node c, 9 = 8 + i 2 i 2 = 1A
At node d, 9 = 12 + i 3 i 3 = -3A
Chapter 2, Solution 9
Applying KCL,
i 1 + 1 = 10 + 2 i 1 = 11A 1 + i 2 = 2 + 3 i 2 = 4A
i 2 = i 3 + 3 i 3 = 1A
Chapter 2, Solution 10
At node 1, 4 + 3 = i 1 i 1 = 7A
At node 3, 3 + i 2 = -2 i 2 = -5A
i (^2) i (^1)
Applying KVL to each loop gives
-8 + v 1 + 12 = 0 v 1 = 4v
-12 - v 2 + 6 = 0 v 2 = -6v
10 - 6 - v 3 = 0 v 3 = 4v
-v 4 + 8 - 10 = 0 v 4 = -2v
Chapter 2, Solution 12
For loop 1, -20 -25 +10 + v 1 = 0 v 1 = 35v
For loop 2, -10 +15 -v 2 = 0 v 2 = 5v
For loop 3, -v 1 +v 2 +v 3 = 0 v 3 = 30v
+ 15v -
loop 3
loop 2
loop 1
20v
- - 25v + + 10v^ - + v^2 -
v
-
v
-
Chapter 2, Solution 13
v 3 10V
For loop 1,
8 − 12 + v 2 = 0 → v 2 = 4 V
V
V
For loop 2,
− v 3 − 8 − 10 = 0 → v 3 = − 18
For loop 3,
− v 1 + 12 + v 3 = 0 → v 1 = − 6
Thus,
v 1 = − 6 V , v 2 = 4 V , v 3 = − 18 V
Chapter 2, Solution 16
+ v 1 -
+ loop 1
loop 2
v 1
-
+ v 2 -
Applying KVL around loop 1,
–6 + v 1 + v 1 – 10 – 12 = 0 v 1 = 14V
Applying KVL around loop 2,
12 + 10 – v 2 = 0 v 2 = 22V
+ v 1 -
+ 10V
loop 2
v
-
v
loop 1
+
It is evident that v 3 = 10V
Applying KVL to loop 2,
v 2 + v 3 + 12 = 0 v 2 = -22V
Applying KVL to loop 1,
-24 + v 1 - v 2 = 0 v 1 = 2V
Thus,
v 1 = 2V , v 2 = -22V , v 3 = 10V
Chapter 2, Solution 18
Applying KVL,
-Vab + 5I + 8 = 0 Vab = 28V
+ v 0 -
6 Ω 10A 2v
At the node, KCL requires that
0
0 10 2 v 4
v
The current through the controlled source is
i = 2V 0 = -8.888A
and the voltage across it is
v = (6 + 4) i 0 = 10 11. 111 4
v (^0) =−
Hence,
p 2 vi = (-8.888)(-11.111) = 98.75 W
Chapter 2, Solution 23
The circuit is reduced to that shown below.
ix 1 Ω
Applying current division,
i (^) x = A A v (^) x i
= =
2
2 1 3
( 6 ) 2 , (^1) x = 2 V
The current through the 1.2- Ω resistor is 0.5ix = 1A. The voltage across the 12-
resistor is 1 x 4.8 = 4.8 V. Hence the power is
Ω
p
v
R
= = = W
2 2 4 8
12
1 92
. .
Chapter 2, Solution 24
(a) I 0 = R 1 R 2
Vs
3 4
3 4
(^12)
0
R R
( 1 2 )( 3 4 )
0 3 4
R R R R
Vs + +
(b) If R 1 = R 2 = R 3 = R 4 = R,
S
α ⋅ =
α = α = 40
Chapter 2, Solution 25
V 0 = 5 x 10
3 = 50V
Using current division,
= x
V 20 = 20 x 0.1 kV = 2 kV
p 20 = I 20 V 20 = 0.2 kW