Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Solution do Livro de Calculo do Anton, Exercícios de Cálculo

Exercícios Resolvidos do Livro de Calculo do Anton. Solution Anton

Tipologia: Exercícios

2019
Em oferta
40 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 03/09/2019

raiane-manoel-11
raiane-manoel-11 🇧🇷

4

(3)

1 documento

1 / 690

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Physics
ACT
http://PHYSICSACT.wordpress.com
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64
Discount

Em oferta

Pré-visualização parcial do texto

Baixe Solution do Livro de Calculo do Anton e outras Exercícios em PDF para Cálculo, somente na Docsity!

Physics

ACT

http://PHYSICSACT.wordpress.com

1

CHAPTER 1

Functions

EXERCISE SET 1.

  1. (a) around 1943 (b) 1960; (c) no;you need the year’s population (d) war;marketing techniques (e) news of health risk;social pressure, antismoking campaigns, increased taxation
  2. (a) 1989;$35,600 (b) 1975, 1983;$32, (c) the first two years;the curve is steeper (downhill)
  3. (a) − 2. 9 , − 2. 0 , 2. 35 , 2. 9 (b) none (c) y = 0 (d) − 1. 75 ≤ x ≤ 2. 15 (e) ymax = 2.8 at x = − 2 .6; ymin = − 2 .2 at x = 1. 2
  4. (a) x = − 1 , 4 (b) none (c) y = − 1 (d) x = 0, 3 , 5 (e) ymax = 9 at x = 6; ymin = −2 at x = 0
  5. (a) x = 2, 4 (b) none (c) x ≤ 2;4 ≤ x (d) ymin = −1;no maximum value
  6. (a) x = 9 (b) none (c) x ≥ 25 (d) ymin = 1;no maximum value
  7. (a) Breaks could be caused by war, pestilence, flood, earthquakes, for example. (b) C decreases for eight hours, takes a jump upwards, and then repeats.
  8. (a) Yes, if the thermometer is not near a window or door or other source of sudden temperature change. (b) No;the number is always an integer, so the changes are in movements (jumps) of at least one unit.
  9. (a) The side adjacent to the building has length x, so L = x + 2y. Since A = xy = 1000, L = x + 2000/x. (b) x > 0 and x must be smaller than the width of the building, which was not given. (c) 120

80

20 80

(d) Lmin ≈ 89 .44 ft

  1. (a) V = lwh = (6 − 2 x)(6 − 2 x)x (b) From the figure it is clear that 0 < x < 3.

(c) 20

0

0 3

(d) Vmax ≈ 16 in^3

Exercise Set 1.2 3

  1. (a) x = − (^75) (b) x − 3 x^2 must be nonnegative; y = x − 3 x^2 is a parabola that crosses the x-axis at x = 0, (^13) and opens downward, thus 0 ≤ x ≤ (^13)

(c)

x^2 − 4 x − 4

0, so x^2 − 4 > 0 and x − 4 > 0, thus x > 4;or x^2 − 4 < 0 and x − 4 < 0, thus − 2 < x < 2 (d) x = − 1 (e) cos x ≤ 1 < 2, 2 − cos x > 0, all x

  1. (a) x ≤ 3 (b) − 2 ≤ x ≤ 2 (c) x ≥ 0 (d) all x (e) all x
  2. (a) x ≥ 23 (b) − 32 ≤ x ≤ 32 (c) x ≥ 0 (d) x = 0 (e) x ≥ 0
  3. (a) yes (b) yes (c) no (vertical line test fails) (d) no (vertical line test fails)
  4. The sine of θ/2 is (L/2)/10 (side opposite over hypotenuse), so that L = 20 sin(θ/2).
  5. The cosine of θ is (L − h)/L (side adjacent over hypotenuse), so h = L(1 − cos θ).

10. T

t

t

h (^) 12.

5 10 15

t

w

  1. (a) If x < 0, then |x| = −x so f (x) = −x + 3x + 1 = 2x + 1. If x ≥ 0, then |x| = x so f (x) = x + 3x + 1 = 4x + 1;

f (x) =

2 x + 1, x < 0 4 x + 1, x ≥ 0

(b) If x < 0, then |x| = −x and |x − 1 | = 1 − x so g(x) = −x + 1 − x = 1 − 2 x. If 0 ≤ x < 1, then |x| = x and |x − 1 | = 1 − x so g(x) = x + 1 − x = 1. If x ≥ 1, then |x| = x and |x − 1 | = x − 1 so g(x) = x + x − 1 = 2x − 1;

g(x) =

1 − 2 x, x < 0 1 , 0 ≤ x < 1 2 x − 1 , x ≥ 1

  1. (a) If x < 5 /2, then | 2 x − 5 | = 5 − 2 x so f (x) = 3 + (5 − 2 x) = 8 − 2 x. If x ≥ 5 /2, then | 2 x − 5 | = 2x − 5 so f (x) = 3 + (2x − 5) = 2x − 2;

f (x) =

8 − 2 x, x < 5 / 2 2 x − 2 , x ≥ 5 / 2

(b) If x < −1, then |x − 2 | = 2 − x and |x + 1| = −x − 1 so g(x) = 3(2 − x) − (−x − 1) = 7 − 2 x. If − 1 ≤ x < 2, then |x − 2 | = 2 − x and |x + 1| = x + 1 so g(x) = 3(2 − x) − (x + 1) = 5 − 4 x. If x ≥ 2, then |x − 2 | = x − 2 and |x + 1| = x + 1 so g(x) = 3(x − 2) − (x + 1) = 2x − 7;

g(x) =

7 − 2 x, x < − 1 5 − 4 x, − 1 ≤ x < 2 2 x − 7 , x ≥ 2

4 Chapter 1

  1. (a) V = (8 − 2 x)(15 − 2 x)x (b) −∞ < x < +∞, −∞ < V < +∞ (c) 0 < x < 4

(d) minimum value at x = 0 or at x = 4;maximum value somewhere in between (can be approximated by zooming with graphing calculator)

  1. (a) x = 3000 tan θ (b) θ = nπ + π/2 for n an integer, −∞ < n < ∞

(c) 0 ≤ θ < π/2, 0 ≤ x < +∞ (d) 3000 ft 6000

0

0 6

  1. (i) x = 1, −2 causes division by zero (ii) g(x) = x + 1, all x
  2. (i) x = 0 causes division by zero (ii) g(x) =

x + 1 for x ≥ 0

  1. (a) 25 ◦F (b) 2 ◦F (c) − 15 ◦F
  2. If v = 48 then −60 = WCI = 1. 6 T − 55;thus T = (−60 + 55)/ 1. 6 ≈ − 3 ◦F.
  3. If v = 8 then −10 = WCI = 91.4 + (91. 4 − T )(0.0203(8) − 0. 304

8 − 0 .474);thus T = 91.4 + (10 + 91.4)/(0.0203(8) − 0. 304

8 − 0 .474) and T = 5◦F

  1. The WCI is given by three formulae, but the first and third don’t work with the data. Hence −15 = WCI = 91.4 + (91. 4 − 20)(0. 0203 v − 0. 304

v − 0 .474);set x =

v so that v = x^2 and obtain 0. 0203 x^2 − 0. 304 x − 0 .474 + (15 + 91.4)/(91. 4 − 20) = 0. Use the quadratic formula to find the two roots. Square them to get v and discard the spurious solution, leaving v ≈ 25.

  1. Let t denote time in minutes after 9:23 AM. Then D(t) = 1000 − 20 t ft.

EXERCISE SET 1.

  1. (e) seems best, though only (a) is bad.

-0.

y

-1 1

x

  1. (e) seems best, though only (a) is bad and (b) is not good.

-0.

y

-1 1

x

  1. (b) and (c) are good; (a) is very bad.

12

13

14

y

-1 1

x

6 Chapter 1

14. [− 3 , 20] × [− 3500 , 3000]

1000

5 10 15

x

y

15. [− 2 , 2] × [− 20 , 20]

10

20

y

x -2 -1 1 2

16. [1. 6 , 2] × [0, 2]

1

2

y

1.6 1.7 1.8 2

x

  1. depends on graphing utility

2

4

6

y

-4 2 4

x

  1. depends on graphing utility

2

4

6

y

-4 -2 2 4

x

  1. (a) f (x) =

16 − x^2

1

3

-2 2 4

x

y

(b) f (x) = −

16 − x^2

y x -4 -2 2 4

(c)

2 x

y

-2 2

(d)

1

4

1 4

y

x

(e) No;the vertical line test fails.

  1. (a) y = ± 3

1 − x^2 / 4

3

-2 2

x

y

(b) y = ±

x^2 + 1

2

4

-4 -2 2 4

x

y

Exercise Set 1.3 7

  1. (a)

-1 1

x

y

1

(b)

1

x

1

2

y

(c)

-1 (^1)

x

y (^) (d)

c 2 c

1

y

x

(e)

c

1

y

x C

(f )

1

x

1

y

1

x

y

-1 1

  1. The portions of the graph of y = f (x) which lie below the x-axis are reflected over the x-axis to give the graph of y = |f (x)|.
  2. Erase the portion of the graph of y = f (x) which lies in the left-half plane and replace it with the reflection over the y-axis of the portion in the right-half plane (symmetry over the y-axis) and you obtain the graph of y = f (|x|).
  3. (a) for example, let a = 1. 1

a

y

x

(b)

1

2

3

y

1 2 3

x

  1. They are identical.

x

y

5

10

15

y

-1 1 2 3

x

Exercise Set 1.4 9

  1. (a) y

2

1 2

x

(b) x-intercepts at x = 0, a, b. Assume a < b and let a approach b. The two branches of the curve come together. If a moves past b then a and b switch roles.

1

3

1 2 3

x

a = 0. b = 1.

y

1

3

1 2 3

x

a = 1 b = 1.

y

1

3

2 3

x

a = 1. b = 1.

y

  1. The curve oscillates between the lines y = x and y = −x with increasing rapidity as |x| increases.

10

30

y

-30 -10 10 30

x

  1. The curve oscillates between the lines y = +1 and y = −1, infinitely many times in any neighborhood of x = 0. y

–2 4

x

EXERCISE SET 1.

  1. (a)

0

1

y

-1 1 2

x

(b) (^2)

1

y

1 2 3

x

(c) 1^ y

-1 1 2

x

(d) 2

y

-4 -2 2

x

10 Chapter 1

  1. (a) y x -3 1

(b)

x 1

y

1

(c)

x 1

y

1 (d)

x 1

y 1

  1. (a)

1

y

x -2 -1 1 2

(b)

1

y

1

x

(c)

1 y

-1 1 2 3

x

(d)

1

y

-1 1 2 3

x

  1. 1 y

2

x

  1. Translate right 2 units, and up one unit.

10

-2 2 6

x

y

  1. Translate left 1 unit, reflect over x-axis, and translate up 2 units. y

x

1

  1. Translate left 1 unit, stretch vertically by a factor of 2, reflect over x-axis, translate down 3 units. - -

-6 -2 2 6

y x

12 Chapter 1

  1. y = 1 − 1 /x; reflect over x-axis, translate up 1 unit. y

x

5

2

  1. Translate left 2 units and down 2 units.

-4 -

x

y

  1. Translate right 3 units, reflect over x-axis, translate up 1 unit. y

x

1

5

  1. Stretch vertically by a factor of 2, translate right 1 unit and up 1 unit. y

x

2

4

2

  1. y = |x − 2 |;translate right 2 units.

y

x

1

2

2 4

  1. Stretch vertically by a factor of 2, reflect over x-axis, translate up 1 unit.

1

3

-2 2

x

y

  1. Translate right 2 units and down 3 units. y (^) x

2

  1. Translate left 1 unit and up 2 units.

1

3

y

-3 -1 1

x

  1. Translate right 2 units, reflect over x-axis. y

x

1

4

  1. (a) 2 y

-1 1

x

(b) y =

0 if x ≤ 0 2 x if 0 < x

Exercise Set 1.4 13

  1. y

x

2

  1. (f + g)(x) = x^2 + 2x + 1, all x; (f − g)(x) = 2x − x^2 − 1, all x; (f g)(x) = 2x^3 + 2x, all x; (f /g)(x) = 2x/(x^2 + 1), all x
  2. (f + g)(x) = 3x − 2 + |x|, all x; (f − g)(x) = 3x − 2 − |x|, all x; (f g)(x) = 3x|x| − 2 |x|, all x; (f /g)(x) = (3x − 2)/|x|, all x = 0
  3. (f + g)(x) = 3

x − 1, x ≥ 1;( f − g)(x) =

x − 1, x ≥ 1;( f g)(x) = 2x − 2, x ≥ 1; (f /g)(x) = 2, x > 1

  1. (f + g)(x) = (2x^2 + 1)/[x(x^2 + 1)], all x = 0; (f − g)(x) = − 1 /[x(x^2 + 1)], all x = 0; (f g)(x) = 1 /(x^2 + 1), all x = 0; (f /g)(x) = x^2 /(x^2 + 1), all x = 0
  2. (a) 3 (b) 9 (c) 2 (d) 2
  3. (a) π − 1 (b) 0 (c) −π^2 + 3π − 1 (d) 1
  4. (a) t^4 + 1 (b) t^2 + 4t + 5 (c) x^2 + 4x + 5 (d)

x^2

(e) x^2 + 2xh + h^2 + 1 (f ) x^2 + 1 (g) x + 1 (h) 9 x^2 + 1

  1. (a)

5 s + 2 (b)

x + 2 (c) 3

5 x (d) 1 /

x (e) 4

x (f ) 0 (g) 1 / 4

x (h) |x − 1 |

  1. (f ◦ g)(x) = 2x^2 − 2 x + 1, all x; (g ◦ f )(x) = 4x^2 + 2x, all x
  2. (f ◦ g)(x) = 2 − x^6 , all x; (g ◦ f )(x) = −x^6 + 6x^4 − 12 x^2 + 8, all x
  3. (f ◦ g)(x) = 1 − x, x ≤ 1;( g ◦ f )(x) =

1 − x^2 , |x| ≤ 1

  1. (f ◦ g)(x) =

x^2 + 3 − 3, |x| ≥

6;( g ◦ f )(x) =

x, x ≥ 3

  1. (f ◦ g)(x) =

1 − 2 x , x =

, 1;( g ◦ f )(x) = −

2 x

, x = 0, 1

  1. (f ◦ g)(x) =

x x^2 + 1

, x = 0; (g ◦ f )(x) =

x

  • x, x = 0
  1. x−^6 + 1 46. x x + 1
  2. (a) g(x) =

x, h(x) = x + 2 (b) g(x) = |x|, h(x) = x^2 − 3 x + 5

  1. (a) g(x) = x + 1, h(x) = x^2 (b) g(x) = 1/x, h(x) = x − 3
  2. (a) g(x) = x^2 , h(x) = sin x (b) g(x) = 3/x, h(x) = 5 + cos x

Exercise Set 1.4 15

  1. (a)

x

y (^) (b)

x

y

(c) x

y

  1. (a) (^) x − 3 − 2 − 1 0 1 2 3

f (x) 1 − 5 − 1 0 − 1 − 5 1

(b) (^) x − 3 − 2 − 1 0 1 2 3 f (x) 1 5 − 1 0 1 − 5 − 1

  1. (a)

x

y (^) (b)

x

y

  1. (a) even (b) odd (c) odd (d) neither
  2. neither;odd;even
  3. (a) f (−x) = (−x)^2 = x^2 = f (x), even (b) f (−x) = (−x)^3 = −x^3 = −f (x), odd

(c) f (−x) = | − x| = |x| = f (x), even (d) f (−x) = −x + 1, neither

(e) f (−x) =

(−x)^3 − (−x) 1 + (−x)^2

x^3 + x 1 + x^2

= −f (x), odd

(f ) f (−x) = 2 = f (x), even

  1. (a) x-axis, because x = 5(−y)^2 + 9 gives x = 5y^2 + 9

(b) x-axis, y-axis, and origin, because x^2 − 2(−y)^2 = 3, (−x)^2 − 2 y^2 = 3, and (−x)^2 − 2(−y)^2 = 3 all give x^2 − 2 y^2 = 3

(c) origin, because (−x)(−y) = 5 gives xy = 5

  1. (a) y-axis, because (−x)^4 = 2y^3 + y gives x^4 = 2y^3 + y

(b) origin, because (−y) =

(−x) 3 + (−x)^2

gives y =

x 3 + x^2

(c) x-axis, y-axis, and origin because (−y)^2 = |x| − 5, y^2 = | − x| − 5 , and (−y)^2 = | − x| − 5 all give y^2 = |x| − 5

16 Chapter 1

-4 4

-3 3

  1. (a) Whether we replace x with −x, y with −y, or both, we obtain the same equation, so by Theorem 1.4.3 the graph is symmetric about the x-axis, the y-axis and the origin. (b) y = (1 − x^2 /^3 )^3 /^2 (c) For quadrant II, the same;for III and IV use y = −(1 − x^2 /^3 )^3 /^2. (For graphing it may be helpful to use the tricks that precede Exercise 29 in Section 1.3.)

2

5

y

1 2

x

  1. y

x

2

2

  1. (a) 1

y

C

x O c^ o

(b) 2

y

O

x C c^ o

  1. (a)

x 1

y

1

(b)

x 1

y

1

  • ‚ 2 -1 ‚ (^2) ‚ 3

(c)

x 1

y

3

(d)

x

y 1

C^ c/

  1. Yes, e.g. f (x) = xk^ and g(x) = xn^ where k and n are integers.
  2. If x ≥ 0 then |x| = x and f (x) = g(x). If x < 0 then f (x) = |x|p/q^ if p is even and f (x) = −|x|p/q if p is odd;in both cases f (x) agrees with g(x).

18 Chapter 1

  1. Parallel means the lines have equal slopes, so y = 4x + 7. 12

0

-1 1

  1. The slope of both lines is − 3 /2, so y − 2 = (− 3 /2)(x − (−1)), or y = − 32 x + (^12) 4

-2 1

  1. The negative reciprocal of 5 is − 1 /5, so y = − 15 x + 6. 12

0

-9 9

  1. The slope of x − 4 y = 7 is 1/ 4 whose negative reciprocal is −4, so y − (−4) = −4(x − 3) or y = − 4 x + 8. 9

0 18

  1. m =

so y − (−7) = 11(x − 1), or y = 11x − 18 7

0 4

  1. m =

= −5, so

y − 6 = −5(x − (−3)), or y = − 5 x − 9 15

–3 0

  1. (a) m 1 = m 2 = 4, parallel (b) m 1 = 2 = − 1 /m 2 , perpendicular

(c) m 1 = m 2 = 5/3, parallel (d) If A = 0 and B = 0 then m 1 = −A/B = − 1 /m 2 , perpendicular;if A = 0 or B = 0 (not both) then one line is horizontal, the other vertical, so perpendicular. (e) neither

  1. (a) m 1 = m 2 = −5, parallel (b) m 1 = 2 = − 1 /m 2 , perpendicular (c) m 1 = − 4 /5 = − 1 /m 2 , perpendicular (d) If B = 0, m 1 = m 2 = −A/B; (e) neither if^ B^ = 0 both are vertical, so parallel
  2. (a) m = (0 − (−3))/(2 − 0)) = 3/2 so y = 3x/ 2 − 3

(b) m = (− 3 − 0)/(4 − 0) = − 3 /4 so y = − 3 x/ 4

  1. (a) m = (0 − 2)/(2 − 0)) = −1 so y = −x + 2

(b) m = (2 − 0)/(3 − 0) = 2/3 so y = 2x/ 3

Exercise Set 1.5 19

  1. (a) The velocity is the slope, which is

= 9/10 ft/s.

(b) x = − 4 (c) The line has slope 9/10 and passes through (0, −4), so has equation x = 9t/ 10 − 4;at t = 2, x = − 2 .2. (d) t = 80/ 9

  1. (a) v =

= 2 m/s (b) x − 1 = 2(t − 2) or x = 2t − 3 (c) x = − 3

  1. (a) The acceleration is the slope of the velocity, so a =

ft/s^2.

(b) v − 3 = − 43 (t − 1), or v = − 43 t + 133 (c) v = 133 ft/s

  1. (a) The acceleration is the slope of the velocity, so a =

ft/s^2.

(b) v = 5 ft/s (c) v = 4 ft/s (d) t = 4 s

  1. (a) It moves (to the left) 6 units with velocity v = −3 cm/s, then remains motionless for 5 s, then moves 3 units to the left with velocity v = −1 cm/s.

(b) vave =

cm/s

(c) Since the motion is in one direction only, the speed is the negative of the velocity, so save = 109 cm/s.

  1. It moves right with constant velocity v = 5 km/h;then accelerates;then moves with constant, though increased, velocity again;then slows down.
  2. (a) If x 1 denotes the final position and x 0 the initial position, then v = (x 1 − x 0 )/(t 1 − t 0 ) = 0 mi/h, since x 1 = x 0. (b) If the distance traveled in one direction is d, then the outward journey took t = d/40 h. Thus save =

total dist total time

2 d t + (2/3)t

80 t t + (2/3)t

= 48 mi/h.

(c) t + (2/3)t = 5, so t = 3 and 2d = 80t = 240 mi round trip

  1. (a) down, since v < 0 (b) v = 0 at t = 2 (c) It’s constant at 32 ft/s^2.
  2. (a) v

t

20

60

20 80

(b) v =

10 t if 0 ≤ t ≤ 10 100 if 10 ≤ t ≤ 100 600 − 5 t if 100 ≤ t ≤ 120

  1. x

t