




























































































Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Exercícios Resolvidos do Livro de Calculo do Anton. Solution Anton
Tipologia: Exercícios
Oferta por tempo limitado
Compartilhado em 03/09/2019
4
(3)1 documento
1 / 690
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Em oferta
1
Functions
80
20 80
(d) Lmin ≈ 89 .44 ft
(c) 20
0
0 3
(d) Vmax ≈ 16 in^3
Exercise Set 1.2 3
(c)
x^2 − 4 x − 4
0, so x^2 − 4 > 0 and x − 4 > 0, thus x > 4;or x^2 − 4 < 0 and x − 4 < 0, thus − 2 < x < 2 (d) x = − 1 (e) cos x ≤ 1 < 2, 2 − cos x > 0, all x
t
t
h (^) 12.
5 10 15
t
w
f (x) =
2 x + 1, x < 0 4 x + 1, x ≥ 0
(b) If x < 0, then |x| = −x and |x − 1 | = 1 − x so g(x) = −x + 1 − x = 1 − 2 x. If 0 ≤ x < 1, then |x| = x and |x − 1 | = 1 − x so g(x) = x + 1 − x = 1. If x ≥ 1, then |x| = x and |x − 1 | = x − 1 so g(x) = x + x − 1 = 2x − 1;
g(x) =
1 − 2 x, x < 0 1 , 0 ≤ x < 1 2 x − 1 , x ≥ 1
f (x) =
8 − 2 x, x < 5 / 2 2 x − 2 , x ≥ 5 / 2
(b) If x < −1, then |x − 2 | = 2 − x and |x + 1| = −x − 1 so g(x) = 3(2 − x) − (−x − 1) = 7 − 2 x. If − 1 ≤ x < 2, then |x − 2 | = 2 − x and |x + 1| = x + 1 so g(x) = 3(2 − x) − (x + 1) = 5 − 4 x. If x ≥ 2, then |x − 2 | = x − 2 and |x + 1| = x + 1 so g(x) = 3(x − 2) − (x + 1) = 2x − 7;
g(x) =
7 − 2 x, x < − 1 5 − 4 x, − 1 ≤ x < 2 2 x − 7 , x ≥ 2
4 Chapter 1
(d) minimum value at x = 0 or at x = 4;maximum value somewhere in between (can be approximated by zooming with graphing calculator)
(c) 0 ≤ θ < π/2, 0 ≤ x < +∞ (d) 3000 ft 6000
0
0 6
x + 1 for x ≥ 0
8 − 0 .474);thus T = 91.4 + (10 + 91.4)/(0.0203(8) − 0. 304
8 − 0 .474) and T = 5◦F
v − 0 .474);set x =
v so that v = x^2 and obtain 0. 0203 x^2 − 0. 304 x − 0 .474 + (15 + 91.4)/(91. 4 − 20) = 0. Use the quadratic formula to find the two roots. Square them to get v and discard the spurious solution, leaving v ≈ 25.
-0.
y
-1 1
x
-0.
y
-1 1
x
12
13
14
y
-1 1
x
6 Chapter 1
1000
5 10 15
x
y
10
20
y
x -2 -1 1 2
1
2
y
1.6 1.7 1.8 2
x
2
4
6
y
-4 2 4
x
2
4
6
y
-4 -2 2 4
x
16 − x^2
1
3
-2 2 4
x
y
(b) f (x) = −
16 − x^2
y x -4 -2 2 4
(c)
2 x
y
-2 2
(d)
1
4
1 4
y
x
(e) No;the vertical line test fails.
1 − x^2 / 4
3
-2 2
x
y
(b) y = ±
x^2 + 1
2
4
-4 -2 2 4
x
y
Exercise Set 1.3 7
-1 1
x
y
1
(b)
1
x
1
2
y
(c)
-1 (^1)
x
y (^) (d)
c 2 c
1
y
x
(e)
c
1
y
x C
(f )
1
x
1
y
1
x
y
-1 1
a
y
x
(b)
1
2
3
y
1 2 3
x
x
y
5
10
15
y
-1 1 2 3
x
Exercise Set 1.4 9
2
1 2
x
(b) x-intercepts at x = 0, a, b. Assume a < b and let a approach b. The two branches of the curve come together. If a moves past b then a and b switch roles.
1
3
1 2 3
x
a = 0. b = 1.
y
1
3
1 2 3
x
a = 1 b = 1.
y
1
3
2 3
x
a = 1. b = 1.
y
10
30
y
-30 -10 10 30
x
–2 4
x
0
1
y
-1 1 2
x
(b) (^2)
1
y
1 2 3
x
(c) 1^ y
-1 1 2
x
(d) 2
y
-4 -2 2
x
10 Chapter 1
(b)
x 1
y
1
(c)
x 1
y
1 (d)
x 1
y 1
1
y
x -2 -1 1 2
(b)
1
y
1
x
(c)
1 y
-1 1 2 3
x
(d)
1
y
-1 1 2 3
x
2
x
10
-2 2 6
x
y
x
1
-6 -2 2 6
y x
12 Chapter 1
x
5
2
-4 -
x
y
x
1
5
x
2
4
2
y
x
1
2
2 4
1
3
-2 2
x
y
2
1
3
y
-3 -1 1
x
x
1
4
-1 1
x
(b) y =
0 if x ≤ 0 2 x if 0 < x
Exercise Set 1.4 13
x
2
x − 1, x ≥ 1;( f − g)(x) =
x − 1, x ≥ 1;( f g)(x) = 2x − 2, x ≥ 1; (f /g)(x) = 2, x > 1
x^2
(e) x^2 + 2xh + h^2 + 1 (f ) x^2 + 1 (g) x + 1 (h) 9 x^2 + 1
5 s + 2 (b)
x + 2 (c) 3
5 x (d) 1 /
x (e) 4
x (f ) 0 (g) 1 / 4
x (h) |x − 1 |
1 − x^2 , |x| ≤ 1
x^2 + 3 − 3, |x| ≥
6;( g ◦ f )(x) =
x, x ≥ 3
1 − 2 x , x =
, 1;( g ◦ f )(x) = −
2 x
, x = 0, 1
x x^2 + 1
, x = 0; (g ◦ f )(x) =
x
x, h(x) = x + 2 (b) g(x) = |x|, h(x) = x^2 − 3 x + 5
Exercise Set 1.4 15
x
y (^) (b)
x
y
(c) x
y
f (x) 1 − 5 − 1 0 − 1 − 5 1
(b) (^) x − 3 − 2 − 1 0 1 2 3 f (x) 1 5 − 1 0 1 − 5 − 1
x
y (^) (b)
x
y
(c) f (−x) = | − x| = |x| = f (x), even (d) f (−x) = −x + 1, neither
(e) f (−x) =
(−x)^3 − (−x) 1 + (−x)^2
x^3 + x 1 + x^2
= −f (x), odd
(f ) f (−x) = 2 = f (x), even
(b) x-axis, y-axis, and origin, because x^2 − 2(−y)^2 = 3, (−x)^2 − 2 y^2 = 3, and (−x)^2 − 2(−y)^2 = 3 all give x^2 − 2 y^2 = 3
(c) origin, because (−x)(−y) = 5 gives xy = 5
(b) origin, because (−y) =
(−x) 3 + (−x)^2
gives y =
x 3 + x^2
(c) x-axis, y-axis, and origin because (−y)^2 = |x| − 5, y^2 = | − x| − 5 , and (−y)^2 = | − x| − 5 all give y^2 = |x| − 5
16 Chapter 1
-4 4
-3 3
2
5
y
1 2
x
x
2
2
y
C
x O c^ o
(b) 2
y
O
x C c^ o
x 1
y
1
(b)
x 1
y
1
(c)
x 1
y
3
(d)
x
y 1
C^ c/
18 Chapter 1
0
-1 1
-2 1
0
-9 9
0 18
so y − (−7) = 11(x − 1), or y = 11x − 18 7
0 4
= −5, so
y − 6 = −5(x − (−3)), or y = − 5 x − 9 15
–3 0
(c) m 1 = m 2 = 5/3, parallel (d) If A = 0 and B = 0 then m 1 = −A/B = − 1 /m 2 , perpendicular;if A = 0 or B = 0 (not both) then one line is horizontal, the other vertical, so perpendicular. (e) neither
(b) m = (− 3 − 0)/(4 − 0) = − 3 /4 so y = − 3 x/ 4
(b) m = (2 − 0)/(3 − 0) = 2/3 so y = 2x/ 3
Exercise Set 1.5 19
= 9/10 ft/s.
(b) x = − 4 (c) The line has slope 9/10 and passes through (0, −4), so has equation x = 9t/ 10 − 4;at t = 2, x = − 2 .2. (d) t = 80/ 9
= 2 m/s (b) x − 1 = 2(t − 2) or x = 2t − 3 (c) x = − 3
ft/s^2.
(b) v − 3 = − 43 (t − 1), or v = − 43 t + 133 (c) v = 133 ft/s
ft/s^2.
(b) v = 5 ft/s (c) v = 4 ft/s (d) t = 4 s
(b) vave =
cm/s
(c) Since the motion is in one direction only, the speed is the negative of the velocity, so save = 109 cm/s.
total dist total time
2 d t + (2/3)t
80 t t + (2/3)t
= 48 mi/h.
(c) t + (2/3)t = 5, so t = 3 and 2d = 80t = 240 mi round trip
t
20
60
20 80
(b) v =
10 t if 0 ≤ t ≤ 10 100 if 10 ≤ t ≤ 100 600 − 5 t if 100 ≤ t ≤ 120
t