Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Soluções - Engenharia de Controle Moderno, Manuais, Projetos, Pesquisas de Engenharia de Telecomunicações

Manual do Soluções do Livro Engenhari de Controle Moderno - Ogata

Tipologia: Manuais, Projetos, Pesquisas

2010
Em oferta
50 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 11/04/2010

fabio-azevedo-13
fabio-azevedo-13 🇧🇷

5

(11)

1 documento

1 / 200

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64
Discount

Em oferta

Pré-visualização parcial do texto

Baixe Soluções - Engenharia de Controle Moderno e outras Manuais, Projetos, Pesquisas em PDF para Engenharia de Telecomunicações, somente na Docsity!

Solutions to B Problems CHAPTER 2 E(t) = 0 t0 dot) = s Referring to Equation (2-2), we obtain F(s) = do [e(t)) = dy It 6-2) = ARE B-2-2. (a) E (t) =0 t0 2] = 2 do [t2] BE Referring to Equation (2-2), we obtain P(s) = do [E(t)] = À) [tZeat)= —2 (s + a)3 E(t) = 0 t0 cos 2cWt cos 3Wt = 4(cos 5Swt + cosuwt) F(s) = 45 [E(t)] = dy [blcos St t + cos 4/t)] a (s2 + 13w2)s s s = 2 (== +25? + =) (s2 + 25 w2)(s2 + 4?) B-2-5. The function f(t) can be written as E(t)=(t-a) i(t-a) The Laplace transform of f(t) is eras z. F(s) = 0; [E(t)] =) [lt -a) lt -a)]= B-2-6. f(t)=ci(t-a)-ci(t-b) The Laplace transform of f(t) is ns et. o (eras — ebs) F(s) =c = ES The limiting value of lim F(s) a>0 F(s) as a approaches zero is 24(1 - as ertas - eras) = lim a+0 a3s2 = 2a(1 - as e-tas — eras) = lim a>0 É a3s2 2 24(-s e8S + -BSÉ qtas + 5 eras) = lim a>0 3a2s2 de etas + aê ertas + Eras) = 1im da A a>0 ad 2 qa às 8 [a etas ,S cas ,as(syçtas se-as| = lim a>0 2as | -as -kas -as qa (4 e -ase = 46) = lim a>0 qd a da E» 1 -29 6488 5 AS + as 5- CRS +45 es = lim a+0 z =-28 -s+45=s5 B-2-9. f(oo) = 1im f(t) = lim sF(s) tj=2: 00: s>0 =iim SME +2) (5x2 140 E s(s +) 1 BRENO: e(0+) = lim e(t)=lim —S2C+2 3 t>0+ soc S(s + 1)(s +3) B-2-11. Define A y=x Then Es y(0+) = x(0+) The initial value of y can be obtained by use of the initial value theorem as follows: y(0+) = lim sy(s) s>00 Since A Y(s) = daly(t)] = de lx(t)] = sX(s) - x(0+) ve obtain y(0+) = lim sY(s) = lim s[sX(s) - x(0+)] s>0 s>0 = lim [s2x(s) - sx(0+)] 3200 B-2-12. Note that AR E O] = sP(s) - £(0) 3 [5 o] = s2p(s) - se(0) - £(0) dt2 Define a2 = SÉ f(t) g(t) 2 Then See)=f|Eg(t)|= " E = - d ag 91t))= no(s) - a(o) = s[s2r(s) - s£(0) - £(0)] - (0) = e3r(s) - s2r(0) - sE(O) - E(0) B-2-13. se? T ) f(t) est a o () o (EA) ca (ce) " b ( acfta = a-S 0 " 3 s(s+1 - ( ) e ( Es) can thus be written as Fls) = 8. de s S+1 s+2Z and the inverse Laplace transfomm of E(s) is £(t)=6-9 et+3e2t B-2-16. EEB 16 43 (a) F,(s) Ea Eu E The inverse Laplace transform of F,(s) is E(t)=6+3 (8) hi F(s) = asda te nho as 2 tas ado 20 PM a ea E +12 where 5s +2 =5+2..3 ER 12 =-1 p = 58 +2 ==10+2. 2 s+2 = 4 1 =-2 » E (843) -5(s+1)- (5s+2 2 1 dsjs+1 qi? (s +31) =) - (10 +2) 43 Ele) can thus be written as Fa(s) ES) 8 3 + + s+1 (s +2)2 8 +2 and the inverse Laplace transform of Fols) is ft) = 3 tra et sao B-2-17. . 282 +45 +5 ad 5 Eles s(s+1) s+1'5(5+1) =2+ Deo red E pe s+1 s s+1 SRI s The inverse Laplace transform of F(s) is att) =2 6(t)-3et+5 B-2-18. pt) = Ra t+ 244 s2 s s2 The inverse Laplace transform of F(s) is F(t)= D(t)+2+4 - B-2-19. B-2-19 Et) É z O Eee E s2 +2s+10 (s+1)2+432 Es, s+1 o 3 (s+1)2+32 (s+1)2+32 Hence f(t) = et cos 3% - E et sin 3 B-2-20. p(s) =-S2 +28 +5 as, [3 s2(s +1) RR where a=-S2+28+5 =5 s+1 amu) B-2-22. Di 1 5 r(s) = - ( a ) RS) 2 aa ipê The inverse Laplace transform of F(s) is e(t)=—L o (t -L sin cot) w? [o B-2-23. a b Fís) = = (1 - e-as) — o e-as a>o The inverse Laplace transform of F(s) is E(t)=ct-c(t-a)l(t-a)-bi(t-a) B-2-24. A MATIAB program to obtain partial-fraction expansions of the given function F(s) is given below. num=[0 0 0 0 1]; den=[1 3 2 0 0]; [r,p,k] = residue(num, den) r= =0.2500 1.0000 =0.7500 0.5000 10 From this computer output we obtain E -0.75 0. Flgite if E , 0.5 s4 + 353 + 282 s+2 s+1 s s2 The inverse Laplace transform of F(s) is f(t) = -0.25 e-2t + et - 0.75 + 0.5t B-2-25. A possible MATLAB program to obtain partial-fraction expansions of the given function F(s) is given below. num=[0 0 3 4 1; den=[1 2 5 8 10]; [r,p,k] = residue(num, den) r= 0.3661 - 0.4881i 0.3661 + 0.4881i -0.3661 - 0.0006i -0.3661 + 0.0006i p= 0.2758 + 1.9081i 0.2758 - 1.9081i -1.2758 + 1.0309i -1.2758 - 1.0309i From this computer output we obtain 22 +48 +1 s4+ 253 + 5s2 + 8s + 10 F(s) = 11 B-2-27. R+w x=t x(0)=0, *0)=0 The Laplace transform of this differential equation is sêx(s) +10 Zx(s) = — s Solving this equation for X(s), we obtain edad elis? + w 2) 2º 2+wW2)W,? The inverse Laplace transform of X(s) is x(t) = ER 1 PR (t - Da sin) t) This is the solution of the given differential equation. B-2-28. X+2+x=1 x(0)=0, x(0) =2 The Laplace transform of this differential equation is 2[s2x(s) - sx(0) - *(0)] + 2[sx(s) - x(0)] + X(s) = + Substitution of the initial conditions into this equation gives 2[s2x(s) - 2] + 2[sx(s)] + x(s) = 1 or (252 + 25 + 1)x(s) =4 + + Solving this last equation for X(s), we get 48 +1 s(252 + 2s +1) X(s) 4 FR 1 2822 +28+1 s(282 + 25 + 1) " 2 x 0.5 (s + 0.5)2 +0.25 sl(s + 0.5)2 + 0.25] " 13 = 4x 0.5 g À (8 + 0.5) +:0.5; (s+0.5)22+0.52 S (s+0.5)2+0.52 The inverse Laplace transform of X(s) gives x(t) = 4805 sino.5t +1 - O: cos 0.5t - e 0-5 sin 0.5t 1+3€0:5 sin 0.5t - e 95% cos 0.5t B-2-29. 2X +Mh+3x=0, x(0) = 3, x(0)-= 0 Taking the Laplace transform of this differential equation, we obtain 2[s2x(s) - sx(0) - x(0)] + 7[sxis) - x(0)] + 3x(s) = 0 By substituting the given initial conditions into this last equation, 2[s2x(s) - 38) + 7[sx(s) - 3] + 3x(s) = 0 or (282 + 75 + 3)x(s) = 6s + 21 Solving for X(s) yields ES +42 = 6s + 21 252 +75 +3 (2s+1)(s+3) x(s) = 72 Olou so oro 28+1 8+3 s+0.5 s+3 Finally, taking the inverse Laplace transform of X(s), we obtain -0.5t — = x(t) = 3.6 e 0.6 e B-2-30. X+x=sin 3, x(0) = 0, *(0) = 0 The Laplace transform of this differential equation is s2x(s) + x(s) => 3 s2 Fe 32 Solving this equation for X(s), we get 3 É 1 1 3 X(s) = “ = (s2 + 1)(s2 + 9) 8 s2+1 8 s2+9 14 CHAPTER 3 págel. JT =4mR2=5x100x0.52=12.5kg-m B-3-2. Assume that the body of known moment of inertia J, is turned through a small angle 6 about the vertical axis and then released. The equation of motion for the oscillation is Nou = ke where kK is the torsional spring constant of the string. This equation can be written as or where The period Tg of this oscillation is T -2X - 27 (1) o 9h) Já po e, Jo Next, we attach a rotating body of unknown moment of inertia J and measure the period T of oscillation. The equation for the period T is pus (2) pe J By eliminating the unknown torsional spring constant k from Equations (1) and (2), we obtain T= 2% 3% .27y7 T E: 2 ag (E 3 so E) (3) The unknowm moment of inertia J can therefore be determined by measuring the period of oscillation T and substituting it into Equation (3). 16 B-3-3. Define the vertical displacement of the ball as x(t) with x(0) = 0. The positive direction is downward. The equation of motion for the system is mk = mg vith initial conditions x(0) = 0 m and X(0) = 20 m/s. So we have x=g x =gt + x(0) TT x=bgt2+x(O +x(0)=b gt? + 20t x Assume that at t = t the ball reaches the ground. Then PM as 2 100 = & x 9.81 t,2 +20 t, from which we obtain = 2.915 t 15 s The ball reaches the ground in 2.915 s. B-3-4. Define the torque applied to the flywheel as T. The equation of motion for the system is J8=T, 0(0)=0, 6(0)=0 from which we obtain à vu 6=L ais By substituting numerical values into this equation, we have 20 x6.28=-L x5 50 Thus T = 1256 N-m B-355. J8=-T (T = braking torque) Integrating this equation, ô= -Te+ (o), — 6(0) = 100 rad/s Substituting the given numerical values, 20 = ==D » 15 + 100 17 The equivalent spring constant E is then obtained as 1 E a Next, consider the figure shom below. Note that A ABD and ACBE are similar. So we have [N or OC(OB + 4 OA) = OA(OB - 4 0C) Solving for &, we obtain A ps QRO Í. a =k oa + DB 1 Sie pal oB kk + B-3-8. (z)' The force £ due to the dampers is E =Di(y-*) +ba(y -%) = (by + Do)(y - x) In terms of the equivalent viscous friction coefficient Degr force £ is given by eos £ = beg(Y - X) beg = by + bz (b) The force £f due to the dampers is E=by(Z-x)=ba(y-2) (1) where z is the displacement of a point between damper by and damper bz. (Note that the same force is transmitted through the shaft.) From Equation (1), we have (by + b2)2 = boy + bjx or Ne NE (bay + bjx) (2) 19 In terms of the equivalent viscous friction coefficient begr force £ is given by £ = bag(Y - x) By substituting Equation (2) into Equation (1), we have . DRE . 1 . . £=ba(y -z) = baly - ETs (bzy + byx)] bjbz a . e (E) bj + bz Thus, o DE Fr bibz : £ = begly - x) = ba(y - 2) CE do E 2 Hence, bybz 2 Peq bra o GEE bj db B-3-9. Since the same force transmits the shaft, we have £=by(2-%)=bo(y- 2) + ba(y - 2) (1) where displacement z is defined in the figure below. ' HE x nas Po y In terms of the equivalent viscous friction coefficient, the force £ is given by £ = beglY - *) (2) From Equation (1) we have a bjZ + boz + baz = bjx + boy + bar or , ai “ , == 3 ts Es [bjx + (bz + b3)y] (3) By substituting Equation (3) into Equation (1), we have 20