Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Solução Lathi 2a ed - Sistemas Lineares - chapter 01, Resumos de Engenharia Elétrica

Solução dos exercicios do livro Sinais e Sistemas Lineares 2a ed, Lathi

Tipologia: Resumos

2015
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 03/12/2015

gustavo-ewald-2
gustavo-ewald-2 🇧🇷

5

(43)

7 documentos

1 / 32

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
Discount

Em oferta

Pré-visualização parcial do texto

Baixe Solução Lathi 2a ed - Sistemas Lineares - chapter 01 e outras Resumos em PDF para Engenharia Elétrica, somente na Docsity!

Chapter 1 Solutions 111. (a) E=ÊMPdt+ fitaPa=3 (b) E=-IPa+ PPA =3 (o) E= fi(Pdt+ f(-2Pdt = 12 (d) E= J(At+ JX-1at=3 “omments: Changing the sign of a signal does not change its energy. Doubling a signal quadruples its energy. Shifting a signal does not change its energy. Multiplying a signal by a constant K increases its energy by a factor K? 112. + 1 1 E 1 1 = 2dt= > =, En = —tdt= =+, E. fa á > , Ff paro 1 2 1 ae lepol [ “92 [aos IK Wdt= 5 Cho = 3» Pa = | (t-1d Pde= 5, 113. (a) 2 1 2 - 2d = 244 4 AVdi = B.= [fa 2, fas [aa 2, 1 2 Ee [ (22dt=4, Evo [ (2)2dt = 4 o 1 Therefore Er+y = Br + Ey. (b) o 1 1 E, -[ sinZtdt = > (Udt — E) cos(2t)dt= 7 +0=7 o 2 o 2 o am E, [ (1)2 dt = 27 b am | a am 2 Emo | Gintripato [ smé(gama / sin(ear+ [ (1)2dt = 1+0+2% = 37 b 6 E o In both cases (a) and (b), Es+y = Es + Ey. Similarly we can show that for both cases E, y = Es + Ey. 23 (c) As seen in part (a), E, =[ sinZtdt=7/2 o Furthermore, x m=[, dt=a o Thus, Em | Gintetat= [ sinê(gatsa singde+ / (dt = m/2+2(2) india o o o o Additionally, Esy -[ (Sint-1Pdi=m/2-44+71= Ei -4 o In this case, Es+y £ Es-y £ Es + Ey. Hence, we cannot generalize the conclu- sions observed in parts (a) and (b). LI4. P=1 [2 (1)dt = 64/7 (a) Ps = PP M-EPdt = 64/7 (b) Pa = 1 [2 (2)dt = 4(64/7) = 256/7 (0) Pes = 3 JP, (ct2dt = 6402/7 Comments: Changing the sign of a signal does not affect its power. Multiplying a signal by a constant c increases the power by a factor c2. 11-5. (a) Power of a sinusoid of amplitude C is C2/2 [Eq. (1.43)) regardless of its frequency (w 4 0) and phase. Therefore, in this case P = 52 + (10)2/2 = 75. (b) Power of a sum of sinusoids is equal to the sum of the powers [Eq. (1.45). Therefore, im this case P = L9Ê + GO — 78, (c) (10 4 2 sin 3t) cos 10t = 10cos 10t + sin 13t — sin 3t. Hence from Eq. (1.4b) = 09) 1410 P= ea +5+5=5. of the sinusoids SÊ -as. (d) 10cos St cos 10t = 5(cos 5t-+cos 15t. Hence from Eq. (1.4b) P = SÊ (e) 10sin 5tcos 10t = 5(sin 15t-sin 5t. Hence from Eq. (1.4b) P = SÊ, caí =25. (f) cit coswot = 3 [e!tetwo)t 4 ee-wot. Using the result in Prob. 1.1-5, we obtain P=(1/4)+(1/4)=1/2. 116. First, a(t) = 34 (TP pa = 340 infinite. Thus, 24 1.21 1.2-2 3. integrands are periodic signals (made up of sinusoids). These terms, when divided by T > 00, yield zero. The remaining terms (k = 7) yield xp E dm, [a DO Vou dt= DO Da T/2 p=m (d) à H 5 + 10cos(100t + 7/3) 5 + 5ei(100+5) 4 5e-I0100+5) = 54 5eim/3ç5100t 4 som im/3p-S100€ ] Hence, P=5 + [574 [pe irBp=25+25+25=75. Thought of another way, note that Do = 5, Dx) = 5 and thus P, = 52452 + 2=75. ER e(t) = 10cos(100t+ 7/3) + 16sin(150t + 1/5) 5eJ7/3/100t 4 50-57/86-5100t — jgçin/5ç5150t 4 jge-in/5p-5150t Hence, P, = [57 P use TP -g8e7/SPrljse IP = 25425+64+64 = 178. Thought of another way, note that Da; = 5 and Dx, = 8. Hence, P, = 5245248248? = 178. iii. (10 +2 sin 3t) cos 10t = 10 cos 10t + sin 13t — sin 3t. In this case, Da, = 5 : D+2 = 0.5 and Ds = 0.5. Hence, P=52 +52 +(0.5)24 (0.5)2 “+ (05)2+ (0.5)2 = 51 iv. 10cos St cos 10t = (cos | u + cos 154). In this case, Dx, = 2.5 and Dyo = 2.5. Hence, P = (2.5)2 4 (2.5)2 + (2.5)2 4 (2. 25 v. 10sin 5tcos 10t = 5(sin 15t-sin 5t). In this case, Dx = 2.5 and Do = 2.5. Hence, P = (2.52 + (2.52 + (2.5)? + (2.5)2 = 25 cit coswgt = 3 [elarwolt 4 edta-wolt In this case, Ds, = 0.5 . Hence, P=(1/22+(1/22 = 1/2 vi. . First, notice that x(t) = «?(t) and that the area of each pulse is one. Since x(t) has an infinite number of pulses, the corresponding energy must also be infinite. To compute the power, notice that N pulses requires an interval of width 2.9 2(i+1) = N2+3N As N — 09, power is computed by the ratio of area to width, or P = limy-oo yEGy = O. Thus, P=0and E =00. Refer to Figure S1.2-). Refer to Figure S1.2-2. (a) a1(t) can be formed by shifting «(t) to the left by 1 plus a time-inverted version of (t) shifted to left by 1. Thus, a(=(tED)+ra(t+D=2(t+D) +20 —0. 26 1.21 1.2-2 3. integrands are periodic signals (made up of sinusoids). These terms, when divided by T > 00, yield zero. The remaining terms (k = 7) yield xp E dm, [a DO Vou dt= DO Da T/2 p=m (d) à H 5 + 10cos(100t + 7/3) 5 + 5ei(100+5) 4 5e-I0100+5) = 54 5eim/3ç5100t 4 som im/3p-S100€ ] Hence, P=5 + [574 [pe irBp=25+25+25=75. Thought of another way, note that Do = 5, Dx) = 5 and thus P, = 52452 + 2=75. ER e(t) = 10cos(100t+ 7/3) + 16sin(150t + 1/5) 5eJ7/3/100t 4 50-57/86-5100t — jgçin/5ç5150t 4 jge-in/5p-5150t Hence, P, = [57 P use TP -g8e7/SPrljse IP = 25425+64+64 = 178. Thought of another way, note that Da; = 5 and Dx, = 8. Hence, P, = 5245248248? = 178. iii. (10 +2 sin 3t) cos 10t = 10 cos 10t + sin 13t — sin 3t. In this case, Da, = 5 : D+2 = 0.5 and Ds = 0.5. Hence, P=52 +52 +(0.5)24 (0.5)2 “+ (05)2+ (0.5)2 = 51 iv. 10cos St cos 10t = (cos | u + cos 154). In this case, Dx, = 2.5 and Dyo = 2.5. Hence, P = (2.5)2 4 (2.5)2 + (2.5)2 4 (2. 25 v. 10sin 5tcos 10t = 5(sin 15t-sin 5t). In this case, Dx = 2.5 and Do = 2.5. Hence, P = (2.52 + (2.52 + (2.5)? + (2.5)2 = 25 cit coswgt = 3 [elarwolt 4 edta-wolt In this case, Ds, = 0.5 . Hence, P=(1/22+(1/22 = 1/2 vi. . First, notice that x(t) = «?(t) and that the area of each pulse is one. Since x(t) has an infinite number of pulses, the corresponding energy must also be infinite. To compute the power, notice that N pulses requires an interval of width 2.9 2(i+1) = N2+3N As N — 09, power is computed by the ratio of area to width, or P = limy-oo yEGy = O. Thus, P=0and E =00. Refer to Figure S1.2-). Refer to Figure S1.2-2. (a) a1(t) can be formed by shifting «(t) to the left by 1 plus a time-inverted version of (t) shifted to left by 1. Thus, a(=(tED)+ra(t+D=2(t+D) +20 —0. 26 tiplying it by 4/3 to obtain dzi(t/2) = à [n(2) + 2(258)]. From this, we subtract a rectangular pedestal of height 1/3 and width 4. This is obtained by time-expanding z2(t) by 2 and multiplying it by 1/3 to yield Iza(t/2) = 1 [e(H2) + e(258)). Hence, 3 ug = 5 [Bras] su atSA (e) z5(t) is a sum of three components: (1) z2(t) time-compressed by a factor 2, (ii) x(t) left-shifted by 1.5, and (iii) a(t) time-inverted and then night shifted by 1.5 Hence, cs(t) = 2(t + 0.5) + 2(0.5 — t) + (t+ 1.5) + o(1.5 — 2). Es- ft-cor de= foco dt= Es Ecs) = [teor di= f. 22(e) do = E, Ex = [ tett-mpa= [todo = E, Exu = FÉ teca ar - f 222) de = Es a uu) = feto -opat= :F. 2a) da = Bo/a, Esujo = fteterop dt= af 2?(a) di = 0B, East) = [E lesorta =a f “(0 dt = E, Comment: Multiplying a signal by constant a increases the signal energy by a factor a2. 1.25. (a) Calling y(t) = 2u(=3t+1) = t(u(=t-1) = u(=t+1)), MATLAB is used to sketch ul). >> t = [-1.5:.001:1.5]; y = inline('t.*((t<=-1)-(t<=1))"); >> plot(t,y(t),'k-'); axis([-1.5 1.5 -1.1 1.1]); >> xlabel('t'); ylabel('2x(-3t+1)º); (b) Since y(t) = 27(=3t+1), 0.5+y(=t/3+1/3) = 0.5(2)z(=3(=t/3+1/3)+1) = a(8). MATLAB is used to sketch z(t). >> y = inline('t.*((t<=-1)-(t<=1))º); >> t [-3:.001:5); x = 0.5+y(-t/3+1/3); >> plot(t,x,'k->); axis([-3 5 -0.6 0.6]); >> xlabel(?t'); ylabel('x(t)º); " ) 1.2-6. MATLAB is used to compute each sketch. Notice that the unit step is in the exponent of the function z(t). 28 1,3-2. (a) (b ) Figure $1.2-5a: Plot of 2r(—3t + 1). Figure $1.2-5b: Plot of x(t) = 0.5y(=t/3 + 1/3) >> t = [-1:.001:1]; >> x = inline(?2."(-t.+(t>=0))"); >> plot(t,x(t),?k'); axis([-1 10 1.1)); >> xlabel(?t”); ylabel('x(t)'); >> plot(t,0.5+x(1-24t),ºk); axis([-1 10 1.1]); >> xlabel(?t?); ylabel(?y(t)'); False. Figure 1.11b is an example of a signal that is continuous-time but digital. False. Figure 1.1Ic is discrete-time but analog. False. e-* is neither an energy nor a power signal. False. e-tu(t) has infinite duration but is an energy signal. False. u(t) is a power signal that is causal. True. A periodic signal, by definition, exists for all t. True. Every bounded periodic signal is a power signal. False. Signals with bounded power are not necessarily periodic. For example, =(t) = cos(t)u(t) is non-periodic but has a bounded power of P, = 0.25 29 Pa, A JP” cost(e)dt (0.5(t + sin(t) cos(t)fi£o) dllor=i mm"? Ps 3 Jo sin?(mt)dt : 2 1 ( E(mt — sin(nt) cos(mt)) Eco) = lly=-l 22m 2 r 2 Pr = lim ap [q (cos(t) + sin(rt))? dt = limenco 55 JE, (cos2(t) + sin?(t) + cos(t) sin(xt)) dt = Po, + Protlimco de J2,.0.5 (sin(mt — t) + sin(nt + 8) dt = Pa +Pr+0= Thus, 1 Pa =Pa=5 and P=1 1.34. No, f(t) = sin(uwt) is not guaranteed to be a periodic function for an arbitrary constant w. Specifically, if w is purely imaginary then f(t) is in the form of hyperbolic sine, which is not a periodic function. For example, if w = 9 then f(t) = ysinh(t). Only when w is constrained to be real will f(t) be periodic. 135. (a) Ey = [Sovi(dt = [No dz?(2t)dt. Performing the change of variable ! = 2t —oco 5 yields [O da?(1) SE = Ex. Thus, E, 1.0417 em En = TE = = 0.0579 (b) Since ya(t) is just a (Ty, = 4)-periodic replication of z(t), the power is easily obtained as E. Es . P, = — == 0.2604 Po To 4 (e) Notice, Ty = Tu/2 = 2 Thus, Pg = Ely, MO! = 3 fr, SUe(2Odt Performing the change of variable = 2t yields Py = 3 fr, Ult) = E Jo e(t)ar = Ez. Thus, = Es = 0.0289. Pos 36 1.3-6. For all parts, y(t) = y(b)=t? over 0 t = [-3:.001:3]; mt = mod(t,2); >> y.1 = (mt<=1).*(mt.2) + (mt>1).*((mt-2).72); >> plot(t,y 1,'k?); xlabel(?t'); ylabel(?y 1(t)?); axis tight; 31 na IVAVAVI Figure $1.3-6a: Plot of qn (t) (b) Let k 1(!) is odd and (T> = 3)-periodic. The constant k is determined dy constraining the power to be unity, P =1 = 1 (x? + Elio). Solving for k yields k2 = 3 2/5 = 13/5 or k = 3/5. Thus, vBh a t = [-3:.001:3]; mt = mod(t,3); >> y.2 = (mt=2) .*((mt-3).72)+... ((mt>=1)&(mt<1.5))+sgrt(13/5)-... C(mt>=1.5)&(mt<2))+sgrt(13/5); >> plot(t,y.2,ºk'); xlabel('t”); ylabel('y 2(t)?); axis([-3 3 -2 2]); (c Define ya(t) = qn (t) + 3ya(t). To be periodic, ys(t) must equal ys(t-+ 3) for some value T3. This implies that qa (t) = qn(t + T3) and qo = ya(t+ T3). Since qn (t) is (Ty = 2)-periodie, Ty must De an integer multiple of 71. Similarly, since ya(t) is (To = 3)-periodic, T3 must be an integer multiple of To. Thus, periodicity of va(t) requires Ty = Tiky = 2k = Toky = 3ko, which is satisfied letting ky = 3 and k = 2. Thus, ya(t) is periodic with Ty = 6. Noting va(Dys (1) = vi(t) + 9308), Pos = 75 Srs (0) + 08(D) dt = Po, + Pos. Thus, (d 1 5 1.41, Refer to Figure S1.4-1 32 (a) 'The impulse is located at 7 = t and a(7) at 7 = t is e(t). Therefore oo f z(r)ó(t — 1) dr = «(0). (b) The impulse 5(7) is at 7 = 0 and a(t — 7) at 7 = 0 is a(t). Therefore [ o(r)z(t = 1) dr = ab). “o Using similar arguments, we obtain (Ja (a) 0 (e) é (1) 5 (g) z(-1) (1) -e 14-5. For sketches, refer to Figure S1.4-5. (a) Recall that the derivative of a function at the jump discontinuity is equal to en impulse of strength equal to the amount of discontinuity. Hence, dz/dt contains impulses 45(t+4) and 25(t—2). In addition, the derivative is —1 over the interval (=4, 0), and is 1 over the interval (0, 2). The derivative is zero for t < —4 and t>2. The result is sketched in Figure $1.4-5(a). (b) Using the procedure in part (a), Figure S1.4-5(b) depicts d?x/dt? for the signal in Figure P1.4-2a. 18 1 e Ml o st SO =1 0" 2 E-= (s [apa +) Figure $1.4-5 1.4-6. For sketches, refer to Figure $1.4-6. (a) Recall that the area under an impulse of strength k is k. Over the interval 0O3 0 1 3-€ 34 (b) lt) = [-sta-n-se-m-sa-9+-3 de = tu(b)-u(t-1)-u(t-2)-u(t-3)-... Figure $1.4-6 1.4-7. Changing the variable t to —z, we obtain Fsosna=- [ Cacaitoda= [” o(-a(0) de = 640) This shows that PE sooma= [Pao dt = 460) Therefore ó(t) = 6(-t) 1.4-8. Letting at = x, we obtain (for a > 0) Fesosaga = 1 f (2) de = 56(0) Similarly for a < 0, we show that this integral is —19(0). Therefore Pe Had = Toto) f * g(s(o) dt Therefore 1 ó(at) = —o(t (et) = 13510 1.4-9. Posmoma = swmor- [Tava u 0- [ótmsma = -5(0) 1.4-10. For sketches, refer to Figure S1.4-10. (a) s12 = 73 (b) e-*tcos 3t = 0.5[e-+i8)t + e-(8-33)]. Therefore the frequencies are s,2 = -3+53. (c) Using the argument in (b), we find the frequencies 5,2 =2+j3 (d) s=-2 35 (b) Ex. = [So z2(t)dt. Because etu(t) and etu(-t) are disjoint in time, the E cross-product term in z2(t) is zero. Hence, oo oo 0 Es. - [ a2(t)dt = 1 TA ettdt +[ esa] =L o alh no 8 Using a similar argument, we have Ba =L 8 Also, ad 1 E; -[ etdt=—. o 4 Hence, E, = Ex + Ex, (c) To generalize this result, we first consider causal e(t). In this case, z(t) and a(=t) are disjoint. Moreover, energy or z(t) is identical to that of z(-t). Hence, E =5 TA to(t)Pde f. iet-opal =5E. Using a similar argument, it follows that E,, = 1 E,. Hence, for causal signals, E, = Es + Es, Identical arguments hold for anti-causal signals. Thus, for anti-causal signal (t) E, = Es + Es, Now, every signal can be expressed as a sum of a causal and an anti-causal signal. Also, the signal energy is equal to the sum of energies of the causal and the anti-causal components. Hence, it follows that for a general case Es — Es + Ex, sto) = Ale(o) + 20-00 = 2(-0) = Aet)P -tet-of?) Since the areas under |r(t)2 and |z(-t)f2 are identical, it follows that f. ze(Bxo(t)dt = 0 (6) f. eddt = 5 sta + 5 Panda Because the areas under z(t) and z(-t) are identical, it follows that FÊ. ze(t)dt = FÊ. e(t)dt. 154. volt) = 0.5(2(t) — (=) = 0.5(sin(mt)u(t) — sin(>mt)Ju(=)) = 0.5sin(mt)(u(t) + u(-t)). Since sin(0) = O, this reduces to zo(t) = 0.5sin(xt), which is a (T = 2)- periodic signal. Therefore, xo(t) = 0.5sin(rt) is a periodic signal. 1.5.5. vet) = 0.5(2() + 2(=0)) = 0.5(cos(rt)u(t) + cos(=mtJu(=8)) = 0.5 cos(me)(u(t) + u(=t)). Written another way, Ze() = ( 0.5 cos(t) o TO such that e.(t+ T) = 2d), . Since there exists no xe(t) is not à periodic function. It is worth pointing out that sometimes the unit step is defined as u(t) = 1 t>0 0.5 t=0 . Using this alternate definition, ze(t) is periodic. o t<0 1.5-6. (a) Using the figure, 2(1) = (+ D)(u(t+ 1) =u() +(=t+1)(u(t)—u(t— 1)). MATLAB is used to plot v(t) = 32 (=3(t+1)) >> x = ânline( (t+1).+((t>=-1)&(t<0))+(-L+1) .+((t>=0)&(t<1))2); >> t = [-5:.001:5]; v = 3+x(-0.5+(t+1)); >> plot(t,v,'k-'); xlabel('t?); ylabelCv(t)'); GOuT a 4 A 0 1 2 3 48 Figure S1.5-6a: Plot of v(t) = 3x (=1(t + 1)). (b) Since v(t) is finite duration, P, = 0. Signal is unaffected by shifting, so v(t) is shifted to start at t = 0. By symmetry, the energy of the first half is equal to the energy of the second half. Thus, E, = 2 J; (Bt) dt = 23 Thus, E, =12and P,=0. 38 s 4 a a su a O ' t n a d Fa a 2 E? o 4 42 õ Figure S1.5-6d: Plots of v(2t + 3), v(2t) + 3, 2u(t + 3), and 2u(t) + 3. >> subplot (221); plot(t,v(axt+b),?k-'); grid; >> xlabel('t'); ylabel(ºv(at+b)'); axis(ax); >> subplot(222); plot(t,v(a+*t)+b,?k-'); grid; >> xlabel(?t?); ylabel(ºv(at)+b”); axis(ax); >> subplot(223); plot(t,atv(t+b),ºk-'); grid; >> xlabel(ºt?); ylabel('av(t+b)?); axis(ax); >> subplot (224); plot(t,arv(t)+b,'k-?); grid; >> xlabel(?t'); ylabel(av(t)+b”); axis(ax); EN EVAN vin) may E] Figure $1.5-6e: Plots of v(-3t — 2), v(=3t) — 2, —3u(t — 2), and —3u(t) — 2. 1.57. (a) Using the figure, v(t) = t(u(t) — u(t— 1)) + (u(t= 1) — u(t — 2)). MATLAB is used to plot yo(t) = “-u9 >> y = inline(?t.*((t>=0)&(t<1))+((t>=1)&(t<2))"); > t= [-5:.001:5]; y.o = (y(t)-y(-t))/2; >> plot(t,y.0,'k-?); xlabel(ºt?); ylabel('y.o(t)'); axis([-5 5 -.6 .6]); 40 E) Figure S1.5-7a: Plot of yo(t) = “U-ulco, Thus, -1/2 -2> y = inline('t.*((t>=0)&(t<1))+((t>=1)&(t<2))"); >> t = [-8:.001:0]; x = 5+y(-0.5+*t-1.5); >> plot(t,x,'k-'); xlabel('t'); ylabel('x(t)'); axis([-8 0 -.5 5.5)); Figure $1.5-7b: Plot of a(t) = 5y(-0.5t — 1.5) Thus, 5 -T