Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Resolução Livro SMITH VAN NESS, Exercícios de Termodinâmica

Resolução do Livro SMITH VAN NESS de Introdução a Termodinâmica

Tipologia: Exercícios

2019

Compartilhado em 03/07/2019

larissa-martins-6
larissa-martins-6 🇧🇷

4.7

(26)

1 documento

1 / 724

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
P 3000atmD 0.17inAS4D2
A 0.023 in2
F P Ag 32.174 ft
sec2
mass F
g
mass 1000.7 lbm
Ans.
1.7 Pabs UghPatm
=
U13.535 gm
cm3
g9.832 m
s2
h 56.38cmPatm 101.78kPaPabs UghPatm
Pabs 176.808 kPa Ans.
1.8 U13.535 gm
cm3
g 32.243 ft
s2
h 25.62inPatm 29.86in_HgPabs UghPatm
Pabs 27.22 psia Ans.
Chapter 1 - Section A - Mathcad Solutions
1.4 The equation that relates deg F to deg C is: t(F) = 1.8 t(C) + 32. Solve this
equation by setting t(F) = t(C).
Guess solution: t 0Given t 1.8t 32=Find t() 40 Ans.
1.5 By definition: PF
A
=F mass g=Note: Pressures are in
gauge pressure.
P 3000barD 4mmAS4D2
A 12.566 mm2
FP Ag 9.807 m
s2
mass F
g
mass 384.4 kg Ans.
1.6 By definition: PF
A
=F mass g=
1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Pré-visualização parcial do texto

Baixe Resolução Livro SMITH VAN NESS e outras Exercícios em PDF para Termodinâmica, somente na Docsity!

P  3000atm D  0.17in A S 4

 ˜D^2 A 0.023 in^2

F  P A˜ g 32.174 ft sec^2

mass F g

 mass 1000.7 lbm Ans.

1.7 (^) Pabs =U ˜ g˜ hPatm

U 13.535 gm cm^3

 ˜ g 9.832 m s^2

 ˜ h  56.38cm

Patm  101.78kPa Pabs  U ˜g ˜ hPatm Pabs 176.808 kPa Ans.

1.8 (^) U 13.535 gm cm^3

 ˜ g 32.243 ft s^2

 ˜ h  25.62in

Patm  29.86in_Hg Pabs  U ˜g ˜ hPatm Pabs 27.22 psia Ans.

Chapter 1 - Section A - Mathcad Solutions

1.4 The equation that relates deg F to deg C is: t(F) = 1.8 t(C) + 32. Solve this equation by setting t(F) = t(C).

Guess solution: (^) t  0 Given t = 1.8t  32 Find t()  40 Ans.

1.5 By definition: (^) P F A

= F = mass g˜ Note: Pressures are in gauge pressure.

P  3000bar D  4mm A S 4

 ˜D^2 A 12.566 mm^2

F  P A˜ g 9.807 m s^2

mass F g

 mass 384.4 kg Ans.

1.6 By definition: (^) P F A

= F =mass g˜

FMars  K x˜ FMars 4 u 10 ^3 mK

gMars

FMars mass

 gMars 0.01 mK kg

Ans.

1.12 Given: z

d P d

=  U˜g and:^ U M P˜ R T˜

= Substituting: z

d P d

M P˜

R T˜

= ˜g

Separating variables and integrating: Psea

PDenver (^1) P P

´μ μ¶

d 0

zDenver M g˜ z R T˜

´μ μ¶

= d

After integrating: (^) ln PDenver Psea

 M ˜g R T˜

= ˜zDenver

Taking the exponential of both sides and rearranging: (^) PDenver Psea e

 M˜g R T˜ ˜zDenver

Psea  1atm M 29 gm mol

 g 9.8 m s^2

1.10 Assume the following: (^) U 13.5 gm cm^3

 g 9.8 m s^2

P  400bar h P U ˜g

 (^) h 302.3 m Ans.

1.11 The force on a spring is described by: F = Ks x where Ks is the spring constant. First calculate K based on the earth measurement then gMars based on spring measurement on Mars. On Earth:

F = mass g˜ = K x˜ mass  0.40kg g 9.81 m s^2

 x  1.08cm

F  mass g˜ F 3.924 N Ks^ F x

 Ks 363.333 N m On Mars: x  0.40cm

Ans.

(b) (^) Pabs^ F A

 Pabs 110.054 kPa Ans.

(c) (^) 'l  0.83m Work  F ˜'l Work 15.848 kJ Ans.

'EP  mass g˜' ˜ l 'EP 1.222 kJ Ans.

1.18 (^) mass  1250kg u 40 m s

EK 1

 mass u ˜^2 EK 1000 kJ Ans.

Work  EK Work 1000 kJ Ans.

1.19 (^) Wdot mass g˜'˜^ h time

Wdot  200W g 9.8 m s^2

 'h  50m

Patm  30.12in_Hg A S 4

 ˜D^2 A 1.227 ft^2

(a) (^) F  Patm ˜ Amass g˜ F 2.8642 u 103 lbf Ans.

(b) (^) Pabs F A

 Pabs 16.208 psia Ans.

(c) (^) 'l  1.7ft Work  F ˜'l Work 4.8691 u 103 ft lb˜ (^) f Ans.

'PE  mass g˜' ˜ l 'PE 424.9 ft lb˜ (^) f Ans.

1.16 (^) D  0.47m mass  150kg g 9.813 m s^2

Patm  101.57kPa A S 4

 ˜D^2 A 0.173 m^2

(a) (^) F  Patm ˜ Amass g˜ F 1.909 u 104 N

mdot Wdot g ˜ 'h˜ 0.91˜0.

 (^) mdot 0.488 kg s

Ans.

a) (^) cost_coal

ton 29 MJ kg

 (^) cost_coal 0.95 GJ  1

cost_gasoline

gal 37 GJ m^3

 (^) cost_gasoline 14.28 GJ ^1

cost_electricity 0. kW hr˜

 (^) cost_electricity 27.778 GJ ^1

b) The electrical energy can directly be converted to other forms of energy whereas the coal and gasoline would typically need to be converted to heat and then into some other form of energy before being useful.

The obvious advantage of coal is that it is cheap if it is used as a heat source. Otherwise it is messy to handle and bulky for tranport and storage.

Gasoline is an important transportation fuel. It is more convenient to transport and store than coal. It can be used to generate electricity by burning it but the efficiency is limited. However, fuel cells are currently being developed which will allow for the conversion of gasoline to electricity by chemical means, a more efficient process.

Electricity has the most uses though it is expensive. It is easy to transport but expensive to store. As a transportation fuel it is clean but batteries to store it on-board have limited capacity and are heavy.

T  t 273.15 lnPsat  ln Psat( )

Array of functions used by Mathcad. In this case, a 0 = A, a 1 = B and a 2 = C.

Guess values of parameters

F T a(  )

exp a 0

a 1 T a 2

exp a 0

a 1 T a 2

T  a 2

exp a 0

a 1 T a 2

a 1 T  a 2 2

exp a 0

a 1 T a 2

 guess

Apply the genfit function

A B C

 genfit T Psat(   guessF)

A

B

C

2.29 u 103  69.

Ans.

Compare fit with data.

(^0240 260 280 300 320 340 )

50

100

150

200

Psat f T(  A BC)

T To find the normal boiling point, find the value of T for which Psat = 1 atm.

This is an open-ended problem. The strategy depends on age of the child, and on such unpredictable items as possible financial aid, monies earned by the child, and length of time spent in earning a degree.

c)

The salary of a Ph. D. engineer over this period increased at a rate of 5.5%, slightly higher than the rate of inflation.

i  Find i( ) i 5.511 %

C 2

C 1

( 1 i) t 2 t 1 Given =

C 2 80000 dollars yr

C 1 16000 dollars  yr

b)t 1  1970 t 2  2000 

The increase in price of gasoline over this period kept pace with the rate of inflation.

C 2 1.513 dollars gal

C 2 C 1 ( 1 i) t 2 t 1  ˜

C 1 0.35 dollars i  5% gal

a)t 1  1970 t 2  2000 

Tnb  273.15K 56.004 degC Ans.

Tnb B Tnb 329.154 K A ln Psat kPa

§ ¨  C

Psat  1atm  ˜ K

Q 34   800 J W 34  300J

'Ut 34  Q 34 W 34 'Ut 34  500 J Ans.

Step 1 to 2 to 3 to 4 to 1: Since 'Ut^ is a state function, 'Ut^ for a series of steps that leads back to the initial state must be zero. Therefore, the sum of the 'Ut^ values for all of the steps must sum to zero.

'Ut 41  4700J 'Ut 23  ''Ut 12 ' Ut 34  Ut 41

'Ut 23  4000 J Ans.

Step 2 to 3: (^) 'Ut 23  4 u 103 J Q 23   3800 J

W 23  'Ut 23 Q 23 W 23  200 J Ans.

For a series of steps, the total work done is the sum of the work done for each step. W 12341   1400 J

2.4 The electric power supplied to the motor must equal the work done by the motor plus the heat generated by the motor.

i 9.7amp E  110V Wdotmech  1.25hp

Wdotelect  i˜E Wdotelect 1.067 u 103 W

Qdot  Wdotelect Wdotmech Qdot 134.875 W Ans.

2.5 Eq. (2.3): 'Ut^ =Q W

Step 1 to 2: (^) 'Ut 12   200 J W 12   6000 J

Q 12  'Ut 12 W 12 Q 12 5.8 u 103 J Ans.

Step 3 to 4:

'U   12 ˜kJ Q  'U Q  12 kJ Ans.

2.13Subscripts: c, casting; w, water; t, tank. Then

mc ˜ 'Uc mw ˜'Uw mt ˜'Ut= 0 Let C represent specific heat, (^) C = CP=CV Then by Eq. (2.18) mc ˜'C (^) c˜ tc mw ˜'C (^) w˜ tw mt ˜'C (^) t˜ tt= 0

mc  2 kg˜ mw  40 kg˜ mt  5 kg˜

Cc 0.50 kJ kg degC˜

 ˜ Ct 0.5 kJ kg degC˜

 ˜ Cw 4.18 kJ kg degC˜

tc  500 degC˜ t 1  25 degC˜ t 2  30 degC˜ (guess)

Given m (^) c˜ Cc˜ t 2 tc = mw ˜ Cw mt ˜Ct ˜ t 2 t 1

t 2  Find t 2 t 2 27.78 degC Ans.

W 41  W 12341  W 12  W 23 W 34 W 41 4.5 u 103 J Ans.

Step 4 to 1: (^) 'Ut 41  4700J W 41 4.5 u 103 J

Q 41  'Ut 41 W 41 Q 41 200 J Ans. Note: (^) Q 12341 =W 12341

2.11 The enthalpy change of the water = work done.

M  20 kg˜ CP 4.18 kJ kg degC˜

 ˜ 't  10 degC˜

Wdot  0.25 kW˜ 'W

M C˜' (^) P˜ t Wdot

 'W 0.929 hr Ans.

2.12 (^) Q  7.5 kJ˜ 'U   12 ˜kJ W  'U Q

W 19.5 kJ Ans.

mdot C˜ (^) p˜ T 3 T 1  mdot 2 ˜ CP˜ T 3 T 2 =Qdot T 3 ˜C (^) P˜ mdot 1 mdot 2 =Qdot  mdot 1 ˜ CP˜T 1 mdot 2 ˜ CP˜T 2

mdot 1 1.0 kg s

 T 1  25degC mdot 2 0.8 kg s

 T 2  75degC

CP 4.18 kJ kg K˜ Qdot  30 kJ  s

T 3

Qdot  mdot 1 ˜ CP˜T 1 mdot 2 ˜ CP˜T 2 mdot 1  mdot 2 ˜CP

 T 3 43.235 degC Ans.

2.25By Eq. (2.32a): (^) 'H 'u

2 2

 = 0 'H =CP ˜'T

By continuity, incompressibility u^2 u^1

A 1

A 2

= ˜ CP 4.18 kJ kg degC˜

2.22 (^) D 1  2.5cm u 1 2 m s

 D 2  5cm

(a) For an incompressible fluid, U=constant. By a mass balance, mdot = constant = u 1 A 1 U = u 2 A 2 U  

u 2 u 1

D 1

D 2

2  ˜ u 2 0.5 m s

Ans.

(b) (^) 'EK^1 2

u 22 1 2

  u 12 'EK 1.875 J kg

Ans.

2.23 Energy balance: (^) mdot 3 ˜ H 3  mdot 1 ˜ H 1 mdot 2 ˜H 2 =Qdot

Mass balance: (^) mdot 3  mdot 1  mdot 2 = 0 Therefore: (^) mdot 1 ˜ H 3 H 1  mdot 2 ˜ H 3 H 2 =Qdot or

u 2 3.5 m s

 molwt 29 kg kmol

Wsdot  98.8kW ndot 50 kmol hr

 CP^7

 ˜R

'H  CP ˜ T 2 T 1 'H 6.402 u 103 kJ kmol By Eq. (2.30):

Qdot 'H

u 22 2

u 12 2

 ˜molwt

 ˜ ndotWsdot Qdot 9.904 kW Ans.

2.27By Eq. (2.32b): (^) 'H 'u

2 2 g˜ c

=  also^

V 2

V 1

T 2

T 1

P 1

P 2

By continunity, constant area u^2 u^1

V 2

V 1

= ˜ u 2 u 1

T 2

T 1

P 1

P 2

= ˜ 'u^2 =u 22 u 12

'u^2 u 12

A 1

A 2

2  1

= ˜ » ¼ 'u

(^2) u 1

2 D^1

D 2

4  1

SI units: (^) u 1 14 m s

 ˜ D 1  2.5 cm˜ D 2  3.8 cm˜

'T

u 12 2 C˜ (^) P

D 1

D 2

4 

 ˜ » ¼ 'T 0.019 degC Ans.

D 2  7.5cm

'T

u 12 2 C˜ (^) P

D 1

D 2

4 

 ˜ » ¼ 'T 0.023 degC Ans.

Maximum T change occurrs for infinite D2: D 2  f ˜cm

'T

u 12 2 C˜ (^) P

D 1

D 2

4 

 ˜ » ¼ 'T 0.023 degC Ans.

2.26 (^) T 1  300K T 2  520K u 1 10 m s

By Eq. (2.23): (^) Q  n C˜ (^) P˜ t 2 t 1 Q 18.62 kJ Ans.

2.31 (a) (^) t 1  70 degF˜ t 2  350 degF˜ n  3 mol˜

CV 5 BTU

mol degF˜

 ˜ By Eq. (2.19):

Q  n C˜ (^) V˜ t 2 t 1 Q 4200 BTU Ans. Take account of the heat capacity of the vessel:

mv  200 lb˜ m cv 0.12 BTU lbm ˜degF

Q  mv ˜ cv n C˜ V˜ t 2 t 1 Q 10920 BTU Ans.

(b) (^) t 1  400 degF˜ t 2  150 degF˜ n  4 mol˜

Continuity: (^) D 2 D 1

u 1 ˜V 2 u 2 ˜V 1  ˜ D 2 1.493 cm Ans.

2.30 (a) (^) t 1  30 degC˜ t 2  250 degC˜ n  3 mol˜

CV 20.

J

mol degC˜

By Eq. (2.19): (^) Q  n C˜ (^) V˜ t 2 t 1 Q 13.728 kJ Ans.

Take into account the heat capacity of the vessel; then

mv  100 kg˜ cv 0. kJ kg degC˜

Q  mv ˜c (^) v n C˜ V˜ t 2 t 1 Q 11014 kJ Ans.

(b) (^) t 1  200 degC˜ t 2  40 degC˜ n  4 mol˜

CP 29.

joule mol degC˜

Wdot  W (^) s˜mdot Wdot 39.52 hp Ans.

2.34 H 1 307 BTU

lbm

 ˜ H 2 330 BTU

lbm

 ˜ u 1 20 ft s

 ˜ molwt 44 gm mol

V 1 9.25 ft

3 lbm

 ˜ V 2 0.28 ft

3 lbm

 ˜ D 1  4 in˜ D 2  1 in˜

mdot

S

˜D 12 ˜u 1

V 1

 mdot 679.263 lb hr

u 2 mdot

V 2

S

˜D 22

 ˜ u 2 9.686 ft sec

Ws 5360 BTU lbmol

Eq. (2.32a): (^) Q H 2  H 1 u 22 u 12 2

Ws molwt

  Q 98.82 BTU

lbm

CP 7

BTU

mol degF˜

 ˜ By Eq. (2.23):

Q  n C˜ (^) P˜ t 2 t 1 Q^ ^7000 BTU^ Ans.

2.33 H 1 1322.6 BTU lbm

 ˜ H 2 1148.6 BTU

lbm

 ˜ u 1 10 ft s

V 1 3.058 ft

3 lbm

 ˜ V 2 78.14 ft

3 lbm

 ˜ D 1  3 in˜ D 2  10 in˜

mdot 3.463 u 104 lb mdot sec

S

˜ D 12 ˜u 1

V 1

u 2 mdot

V 2

S

˜D 22

 ˜ u 2 22.997 ft sec

Eq. (2.32a): (^) Ws H 2  H 1 u 22 u 12 2

  Ws 173.99 BTU lb

Re

Re D^ ˜^ U˜u P

o 

u

m s

D 

 cm

Note: HD = H/D in this solution

P 9.0 10 ˜ ^4 kg HD  0. m s˜

U 996 kg  m^3

'H 1.164 kJ Ans. mol

'H  'Ha 'Hb

'U 0.831 kJ^ Ans. mol

'U  'Ua 'Ub

'Ub 6.315 u 103

J

mol

'Ub  'Hb P 2 ˜ V 2 V 1

'Ha  7.677 u 103

J

mol 'Ha  'Ua V 1 ˜ P 2 P 1

V 2 0.

m^3 mol

V 2

R T˜ 2

P 2

V 1 2.437 u 10 ^3 m 

3 mol

V 1

R T˜ 1

P 1

'Ua  5.484 u 103 J mol

'Ua  CV ˜'Ta

'Hb 8.841 u 103 J mol

'Hb  CP ˜'Tb

'Tb  T 2 Ta2 'Tb 303.835 K 'Ta  Ta2 T 1 'Ta 263.835 K

Cost (^15200) Cost 799924 dollarsAns. Wdot kW

 ˜

Wdot  mdot ˜ H 2 H 1 Wdot  1.009 u 103 kW

Assume that the compressor is adiabatic (Qdot = 0). Neglect changes in KE and PE.

H 2 536.9 kJ kg

H 1 761.1 kJ  ˜ kg

mdot 4.5 kg  s

'P'L Ans.

kPa m

'P'L ^2

D

§ ¨ ˜U ˜fF ˜u^2

 o 

mdot^ Ans.

kg s

mdot U ˜ uS 4

§ ¨ ˜ D 2

 o 

fF

fF 0.3305 ln 0.27 ˜H D^7 Re



 2 ˜

 o