Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Resolução do Volume 2 do apostol, Exercícios de Cálculo

Todo o livro resolvido de Cálculo de Tom M Apostol, volume 2

Tipologia: Exercícios

2022

Compartilhado em 23/11/2022

renan-benites-dos-santos
renan-benites-dos-santos 🇧🇷

5

(1)

1 documento

1 / 142

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
SOLUTIONS TO CALCULUS VOLUME 2 MULTI-VARIABLE CALCULUS AND LINEAR ALGEBRA, WITH
APPLICATIONS TO DIFFERENTIAL EQUATIONS AND PROBABILITY BY TOM APOSTOL
ERNEST YEUNG - PRAHA 10, ˇ
CESK `
A REPUBLIKA
1.5 E XERCISES - INTRODUCTION, TH E DEFI NIT ION O F A LIN EAR S PACE, EX AMP LES O F LIN EAR S PACES ,
ELEM ENTA RY CON SEQ UEN CES O F THE A XIOM S
Recall the following:
Definition 1 (Linear Space.).
Let Vbe a nonempty set of objects.
Linear space if a set Vthat satisfies the following ten axioms.
(1) (closure under addition) x, y V, x +yV
(2) (closure under scalar multiplication) xV, αx V
(3) (Additive commutativity) x, y V , x +y=y+x
(4) (Additive Associativity) x, y V , (x+y) + z=x+ (y+z)
(5) (Additive Identity Existence) 0Vsuch that
x+ 0 = x, xV
(6) (Additive Inverse Existence) (1)xsuch that
x+ (1)x= 0
(7) (Scalar Associativity) xV, α, β Ror α, β C
(αβ)x=α(βx)
(8) (distributivity for addition in V)x, y V;aRor aC,
a(x+y) = ax +ay
(9) (distributivity for addition of numbers) xV, a, b Ror a, b C,
(a+b)x=ax +bx
(10) (Multiplicative identity existence) xV, 1x=x
Exercise 1. Consider x=p
q, y =r
sVwhere p, q, r, s are polynomials. ps +rq , qs are polynomials as well.
x+y=p
q+r
s=ps +rq
qs V
α R, αp is a polynomial
αx =αp
qV
x+y=ps +rq
qs =rq +ps
qs =r+p
(x+y) + z=p
q+r
s+t
v=p
q+r
s+t
v=x+ (y+z)
x+ 0 = p
q+0
q=p
q=xso 0
qVif q6= 0
x+ (1)x=p
q+ (1)p
q=0
q= 0
(αβ)x=(αβ)p
q=α(βp)
q=α(βx)(follows from associativity of real or complex numbers)
α(x+y) = αx +αy and (α+β)x=αx +βx follows from distributivity for real numbers
Consider x=p
q=q
qp
q= (1)x, q
qV
1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Pré-visualização parcial do texto

Baixe Resolução do Volume 2 do apostol e outras Exercícios em PDF para Cálculo, somente na Docsity!

SOLUTIONS TO CALCULUS VOLUME 2 MULTI-VARIABLE CALCULUS AND LINEAR ALGEBRA, WITH

APPLICATIONS TO DIFFERENTIAL EQUATIONS AND PROBABILITY BY TOM APOSTOL

ERNEST YEUNG - PRAHA 10, ˇCESK `A REPUBLIKA

1.5 EXERCISES - INTRODUCTION, THE DEFINITION OF A LINEAR SPACE, EXAMPLES OF LINEAR SPACES,

ELEMENTARY CONSEQUENCES OF THE AXIOMS

Recall the following:

Definition 1 (Linear Space.). Let V be a nonempty set of objects. Linear space if a set V that satisfies the following ten axioms.

(1) (closure under addition) ∀x, y ∈ V, x + y ∈ V (2) (closure under scalar multiplication) ∀x ∈ V, αx ∈ V (3) (Additive commutativity) ∀x, y ∈ V, x + y = y + x (4) (Additive Associativity) ∀x, y ∈ V, (x + y) + z = x + (y + z) (5) (Additive Identity Existence) ∃ 0 ∈ V such that x + 0 = x, ∀x ∈ V (6) (Additive Inverse Existence) ∃(−1)x such that x + (−1)x = 0 (7) (Scalar Associativity) ∀x ∈ V, ∀α, β ∈ R or α, β ∈ C (αβ)x = α(βx) (8) (distributivity for addition in V ) ∀x, y ∈ V ; ∀a ∈ R or ∀a ∈ C, a(x + y) = ax + ay (9) (distributivity for addition of numbers) ∀x ∈ V, ∀a, b ∈ R or ∀a, b ∈ C, (a + b)x = ax + bx (10) (Multiplicative identity existence) ∀x ∈ V, 1 x = x

Exercise 1. Consider x = pq , y = rs ∈ V where p, q, r, s are polynomials. ps + rq, qs are polynomials as well.

x + y =

p q

r s

ps + rq qs

∈ V

α ∈ R, αp is a polynomial

αx = αp q

∈ V

x + y =

ps + rq qs

rq + ps qs = r + p

(x + y) + z =

p q

r s

t v

p q

r s

t v

= x + (y + z)

x + 0 = p q

q

p q

= x so

q

∈ V if q 6 = 0

x + (−1)x = p q

p q

q

(αβ)x = (αβ)p q

α(βp) q

= α(βx) (follows from associativity of real or complex numbers)

α(x + y) = αx + αy and (α + β)x = αx + βx follows from distributivity for real numbers

Consider x =

p q

q q

p q

= (1)x,

q q

∈ V

Exercise 3. All f with f (0) = f (1)

f (0) + g(0) = (f + g)(0) = f (1) + g(1) = (f + g)(1)

af (0) = (af )(0) = af (1) = (af )(1)

f (x) + g(x) = (f + g)(x) = g(x) + f (x) = (g + f )(x)

(f (x) + g(x)) + h(x) = ((f + g) + h)(x) = f (x) + (g(x) + h(x)) = (f + (g + h))(x)

0(x) = 0 (f + 0)(x) = f (x) + 0(x) = f (x)

(−1)f (x) = (−f )(x) (f + (−1)f )(x) = (f − f )(x) = f (x) + (−1)f (x) = 0 = 0(x)

(αβ)f (x) = α(βf (x)) = α(βf )(x)

a(f + g)(x) = a(f (x) + g(x)) = af (x) + ag(x) = (af + ag)(x)

(a + b)f (x) = af (x) + bf (x) = (af )(x) + (bf )(x) = (af + bf )(x)

(1f )(x) = f (x) Exercise 4. All f with 2 f (0) = f (1)

2(f + g)(0) = 2f (0) + 2g(0) = f (1) + g(1) = (f + g)(1)

2(αf )(0) = 2αf (0) = αf (1) = (αf )(1) f + g = g + f, (f + g) + h = f + (g + h) follow from properties of the reals. 20(0) = 0 = 0(1); (f + 0)(x) = f (x) + 0 = f (x) (f + (−f ))(x) = f (x) + −f (x) = 0 (αβ)f (x) = α(βf (x)) a(f + g)(x) = (af )(x) + (ag)(x), (a + b)f (x) = af (x) + bf (x) follow from properties of the reals. 1 x = x Exercise 5. All f with f (1) = 1 + f (0)

f (1) + g(1) = (f + g)(1) = 1 + f (0) + 1 + g(0) = 2 + (f + g)(0)

So closure under addition is violated. Exercise 6. All step functions defined on [0, 1].

Exercise 8. Even functions, f (−x) = f (x).

(f + g)(−x) = f (−x) + g(−x) = f (x) + g(x) (αf )(−x) = αf (−x) = αf (x) = (αf )(x) (f + g)(x) = f (x) + g(x) = g(x) + f (x) = (g + f )(x) (follows from commutativity of real numbers) ((f + g) + h)(−x) = (f + g)(−x) + h(−x) = f (x) + g(x) + h(x) = f (x) + (g + h)(x) = (f + (g + h))(x) (follows from associativity of real numbers) if 0(−x) = 0(x) = 0 ∀x ∈ D so 0 exists and (f + 0)(x) = f (x) + 0(x) = f (x) (−f )(−x) = −f (−x) = −f (x) so (f + −f )(x) = f (x) − f (x) = 0(x) α(βf )(−x) = α(β(f (−x))) = α(βf (x)) = α(βf )(x) ((αβ)f )(−x) = (αβ)f (−x) = (αβ)f (x) = ((αβ)f )(x) (from associativity of the real numbers) α(f + g)(x) = α(f (x) + g(x)) = (αf )(x) + (αg)(x) = (αf + αg)(x) (α + β)f (x) = αf (x) + βf (x) = (αf )(x) + (βf )(x) = (αf + βf )(x) 1 f (x) = 1(f (x)) = f (x)

Exercise 22. All vectors (x, y, z) in V 3 with z = 0.

This space is closed under addition and scalar multiplication since

(x 1 , y 1 , 0) + (x 2 , y 2 , 0) = (x 1 + x 2 , y 1 + y 2 , 0) k(x, y, 0) = (kx, ky, 0)

both belong to this space.

Additive commutativity, additive associativity, scalar associativity, distributivity in addition in V , and distributivity in addition of numbers are satisfied automatically, since all vectors in this subset belong to V 3 , a linear space. (0, 0 , 0) belongs to this space, since z = 0, so existence of an additive identity is fulfilled.

′′(−1)x′′ (^) = 1 x ∈^ R

  • (^) x“ +′′ (^) “(−1)x′′ (^) = x 1 x = 1 = “

′′

(ab)x = xab^ = (xb)a^ = a(bx)

a“ ·′′^ (x“ +′′^ y) = a“ ·′′^ (xy) = (xy)a^ = xaya^ = (a“ · x)“ +′′^ (a“ ·′′^ y)

(a + b)“ ·′′^ x = xa+b^ = xaxb^ = xa“ +′′^ xb^ = a“ ·′′^ x“ +′′^ b“ ·′′^ x

1“ ·′′^ x = x^1 = x This is indeed a linear space. Exercise 30.

(1) From Axiom 5,6, the Additive Identity Existence and Additive Inverse Existence, that ∃ 0 ∈ V s.t. x + 0 = x, ∀ x ∈ V and ∃ (−1)x s.t. x + (−1)x = 0, then, using associativity, commutativity, and distributivity for addition of numbers, x + 0 = x = x + (x + (−1)x) = 2x + (−1)x = (2 + (−1))x = 1x (2) If Ax.6 is replaced by Ax.6’, ∀ x ∈ V, ∃ y ∈ V s.t. x + y = 0, x + 0 = x = x + (x + y) = 2x + y = x So Ax.10 does not hold since 2 x + y = x.

Exercise 31.

(1) (x 1 , x 2 ) + (y 1 , y 2 ) = (x 1 + y 1 , x 2 + y 2 ) a(x 1 , x 2 ) = (ax 1 , 0). Not a linear space: violates Additive Inverse existence, which demands ∃ (−1)x s.t. x + (−1)x = 0, not ∃ y s.t. x + y = 0, so that for (−1)x = (−x 1 , 0), (x 1 , x 2 ) + (−1)x = (0, x 2 ) 6 = 0 and Multiplicative identity existence, since 1 x = (x 1 , 0) 6 = x. (2) (x, 1 , x 2 ) + (y 1 , y 2 ) = (x 1 + y 1 , 0) a(x 1 , x 2 ) = (ax 1 , ax 2 ) Not a linear space: violates distributivity in addition of numbers, because (a + b)x = ((a + b)x 1 , (a + b)x 2 ) but ax + bx = (ax 1 + bx 1 , 0) (3) (x, 1 , x 2 ) + (y 1 , y 2 ) = (x 1 , x 2 + y 2 ) a(x 1 , x 2 ) = (ax 1 , ax 2 ) Not a linear space because it violates Additive Commutativity of elements. (x 1 , x 2 ) + (y 1 , y 2 ) = (x 1 , x 2 + y 2 ) but (y 1 , y 2 ) + (x 1 , x 2 ) = (y 1 , x 2 + y 2 ) (4) (x, 1 , x 2 ) + (y 1 , y 2 ) = (|x 1 + y 1 |, |y 1 + y 2 |) a(x 1 , x 2 ) = (|ax 1 |, |ax 2 |) Not a linear linear space because it violates Distributivity for addition of numbers: (a + b)(x 1 , x 2 ) = (|(a + b)x 1 |, |(a + b)x 2 |) ax + bx = (|ax 1 |, |ax 2 |) + (|bx 1 |, |bx 2 |) but |(a + b)x 1 | ≤ |ax 1 | + |bx 1 | in general

Exercise 32. Theorem 1.3.

(1) 0 x = 0 (2) a0 = 0 (3) (−a)x = −(ax) = a(−x) (4) If ax = 0, then either a = 0 or x = 0 (5) If ax = ay and a 6 = 0, then x = y (6) If ax = bx and x 6 = 0, then a = b (7) −(x + y) = (−x) + (−y) = −x − y (8) x + x = 2x, x + x + x = 3x,

∑n j=1 x^ =^ nx

Part (d), or part 4, is proven by considering this: If ax = 0, then if a = 0 and x = 0, done. If a 6 = 0, ax + a0 = a(x + 0) = 0 since a is a real number, ∃ (^1) a ∈ R s.t.

a

a = 1

=⇒ 1(x + 0) = x + 0 = x =

a

If x 6 = 0, suppose a 6 = 0. 1 a

ax = 1x = x =

a

But 0 is unique. Contradiction. So a = 0 and that’s okay, since by part (a) or part (1) of Thm. 1.3., 0 x = 0.

For part (e), or part 5, if ax = ay, a 6 = 0, then subtract ay from both sides to get ax − ay = 0 = a(x − y) = 0. Use distributivity to get ax − ay = a(x − y) = 0. Since a 6 = 0, then from part (d) or part 4, x − y = 0 must be true. Then −y = −x or, multiplying both sides by − 1 , y = x.

For part (f), or part 6, if ax = ay, subtract bx from both sides and use distributivity to get ax − bx = (a − b)x = 0. Since x 6 = 0, then by part (d), or part 4, a − b = 0. Add b to both sides to get a = b.

For part (g), or part 7, note that from the existence of an additive inverse, x + −x = 0. Consider x + (−1)x = 0. x = 1x by the existence of a multiplicative identity, and so using distributivity, 1 x + (−1)x = (1 + −1)x = 0x = 0. Then (−1)x is also an additive inverse for all x ∈ V. But additive inverses are unique, by theorem, so (−1)x = −x. Using that and distributivity, we get (−x) + (−y) = (−1)x + (−1)y = (−1)(x + y) = −(x + y). −x − y = −(x + y) because x + y + −(x + y) = 0 = x − x + y − y = x + y − x − y, where we used additive commutativity at the last step. Then subtract x + y from both sides to get −x − y = −(x + y).

For part (h), or part 8, use the existence of a multiplicative identity and distributivity to get x + x = 1x + 1x = (1 + 1)x = 2x. Now, we’ll use induction. Assume the nth case, that

∑n j=1 x^ =^ nx. Consider

∑n+ j=1 x.^

∑n+ j=1 x^ =^

∑n j=1 x^ +^ x^ =^ nx^ +^ x^ =^ nx^ + 1x^ = (n^ + 1)x. Done.

1.10 EXERCISES - SUBSPACES OF A LINEAR SPACE, DEPENDENT AND INDEPENDENT SETS IN A LINEAR SPACE, BASES AND DIMENSION, COMPONENTS

Exercise 1. x = 0 (0, y 1 , z 1 ) + (0, y 2 , z 2 ) = (0, y 1 + y 2 , z 1 + z 2 ) ∈ S k(0, y, z) = (0, ky, kz) ∈ S

Yes, S is a subspace. (0, y, z) = y(0, 1 , 0) + z(0, 0 , 1) ∈ S 0 = y(0, 1 , 0) + z(0, 0 , 1) =⇒ z = 0 y = 0 dimS = 2 Exercise 2. x + y = 0

(x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) ∈ S since x 1 + x 2 + y 1 + y 2 = 0 + 0 = 0

k(x, y, z) ∈ S since kx + ky = k(x + y) = 0

Yes, S is a subspace. (x, y, z) = (x, −x, z) = x(1, − 1 , 0) + z(0, 0 , 1) 0 = x(1, − 1 , 0) + z(0, 0 , 1) =⇒ z = 0, x = 0 dimS = 2 Exercise 3. x + y + z = 0

(x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) ∈ S since x 1 + x 2 + y 1 + y 2 + z 1 + z 2 = 0 + 0 = 0

k(x, y, z) ∈ S since k(x + y + z) = kx + ky + kz = 0

Yes, S is a subspace. (x, y, −(x + y)) = x(1, 0 , −1) + y(0, 1 , −1) 0 = x(1, 0 , −1) + y(0, 1 , −1) =⇒ x = 0, y = 0 dimS = 2 Exercise 4. x = y (x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) ∈ S since x 1 + x 2 = y + 1 + y + 2

k(x, y, z) ∈ S since kx = ky

Yes, S is a subspace. (x, y, z) = (x, x, z) = x(1, 1 , 0) + z(0, 0 , 1) 0 = x(1, 1 , 0) + z(0, 0 , 1) =⇒ x = 0, z = 0 dimS = 2 Exercise 5. x = y = z (x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) ∈ S since x 1 + x 2 = y + 1 + y + 2 = z 1 + z 2

k(x, y, z) ∈ S since kx = ky = kz

Exercise 12. f ′(0) = 0

(f + g)′^ = f ′^ + g′^ =⇒ (f + g)′(0) = f ′(0) + g′(0) = 0 (kf )′^ = kf ′^ =⇒ kf ′(0) = 0

Yes S is a subspace.

f =

∑^ n

j=

aj xj

f ′^ =

∑^ n

j=

jaj xj−^1

f ′(0) = 0 =⇒ a 1 = 0

f = a 0 +

∑^ n

j=

aj xj

0 = a 0 +

∑^ n

j=

aj xj^ =⇒ aj = 0, j = 0, 2 , 3 ,... n

dimS = n Note that for the last step, we could’ve sited the fact that a subset of an independent set, such as the {tk} basis for Pn, is an independent set, by definition, and so if that subset spans S, this subset will be a basis for S. Exercise 13. f ′′(0) = 0

(f + g)′′^ = f ′′^ + g′′^ =⇒ (f + g)′′(0) = f ′′(0) + g′′(0) = 0 (kf )′′^ = kf ′′^ =⇒ kf ′′(0) = 0

Yes S is a subspace.

f ′′^ =

∑^ n

j=

j(j − 1)aj xj−^2 =⇒ f = a 0 + a 1 x +

∑^ n

j=

aj xj

f ′′(0) = a 2 = 0

Then f is a linear combination of { 1 , x, x^3 , x^4 ,... , xn}, dimS = n Exercise 14. f (0) + f ′(0) = 0

f + g + f ′^ + g′^ = (f + g) + (f + g)′^ =⇒ (f + g)(0) + (f + g)′(0) = 0 + 0 = 0 kf + (kf )′^ = k(f + f ′) =⇒ kf (0) + (kf )′(0) = k(f (0) + f ′(0)) = 0

Yes S is a subspace.

f + f ′^ =

∑^ n

j=

aj xj^ +

∑^ n

j=

jaj xj−^1

(f + f ′)(0) = a 0 + a 1 = 0 =⇒ a 0 = −a 1

f = a 0 (1 − x) +

∑^ n

j=

aj xj

If f = 0, aj = 0 for j = 2, 3 ,... n, by taking j = 2, 3 ,... n derivatives. a 0 = 0 for f (0) = 0. Thus { 1 − x, x^2 , x^3 ,... , xn} is independent and span S and thus form a basis. dimS = n Exercise 15. f (0) = f (1)

(f + g)(0) = f (0) + g(0) + f (1) + g(1) = (f + g)(1) kf (0) = kf (1)

Yes S is a subspace.

f =

∑^ n

j=

aj xj

f (0) = a 0 = f (1) = a 0 +

∑^ n

j=

aj

∑^ n

j=

aj = 0 or a 1 = −

∑^ n

j=

aj

=⇒ f = a 0 +

∑^ n

j=

aj (xj^ − x)

By differentiating f ′^ = (a 0 )′^ + a 2 (2x − 1) + a 3 (3x^2 − 1)... f ′′^ = a 2 (2) + a 3 x

f ′′^ =

∑^ n

j=

aj (jxj−^2 ) = 0 if f = 0

Then {xj−^2 } is a subset of a basis for Pn. aj = 0 for j = 2,... n. Then a 0 = 0. Thus, { 1 , xj^ − x} is independent and spans S. Then { 1 , xj^ − x} forms a basis for S.

dimS = n Exercise 16. f (0) = f (2)

f (0) + g(0) = (f + g)(0) = f (2) + g(2) = (f + g)(2) kf (0) = kf (2)

Yes S is a subspace.

f =

∑^ n

j=

aj xj

f (0) = a 0 = a 0 +

∑^ n

j=

aj 2 j^ =⇒ 2 a 1 +

∑^ n

j=

2 j^ aj = 0 or a 1 = −

∑^ n

j=

2 j−^1 aj

=⇒ f = a 0 +

∑^ n

j=

aj (xj^ − 2 j−^1 x)

f ′′^ =

∑^ n

j=

aj j(j − 1)xj−^2 and f ′′^ = 0 if f = 0

BS 1 = { 1 , x,... , xn−^2 } is a subset of the basis { 1 , x,... , xn} = BPn for Pn. Then BS 1 is independent, and so aj = 0 for j = 2,... n. Then for f = 0, a 0 = 0. Thus { 1 , x^2 − 2 x, x^3 − 22 x,... , xj^ − 2 j−^1 x,... , xn^ − 2 n−^1 x} is independent and spans S and thus forms a basis for S. dimS = n Exercise 17. f is even. f (−x) = f (x)

(f + g)(−x) = f (−x) + g(−x) = f (x) + g(x) = (f + g)(x) kf (−x) = kf (x)

Yes S is a subspace.

f (−x) =

∑^ n

j=

aj xj^ (−1)j^ = f (x) =

∑^ n

j=

aj xj^ =⇒

∑^ n

j=

aj xj^ ((−1)j^ − 1) = 0

n (^2) n (^) −+ 1 1 if^ n^ is even, is the number of possibly nonzero coefficients for^ f^. 2 + 1 =^

n+ 2 if^ n^ is odd, is the number of possibly nonzero coefficients for^ f^.

Then n 2 or n− 2 1 , if n is even, or n is odd, respectively, are the number of needed elements for a subset from the basis BPn to span f and form a basis for S. Exercise 18. f is odd. f (−x) = f (x)

(f + g)(−x) = f (−x) + g(−x) = −f (x) − g(x) = −(f + g)(x) kf (−x) = −kf (x)

Yes S is a subspace.

f (−x) =

∑^ n

j=

aj xj^ (−1)j^ = −f (x) = −

∑^ n

j=

aj xj^ =⇒

∑^ n

j=

aj xj^ ((−1)j^ + 1) = 0

n (^2) n (^) +1if^ n^ = 2K^ is even, is the number of possibly nonzero coefficients for^ f^. 2 =^

n+ 2 if^ n^ = 2K^ −^1 is odd, is the number of possibly nonzero coefficients for^ f^.

Then n 2 or n+1 2 , if n is even, or n is odd, respectively, are the number of needed elements for a subset from the basis BPn to span f and form a basis for S. Exercise 19. f has degree ≤ k, where k < n or f = 0

(5) If x 1 , x 2 ∈ S

T , then

x 1 ∈ S

x 2 ∈ S

x 1 ∈ T

x 2 ∈ T

. Since S, T are subspaces, x 1 + x 2 , cx 1 ∈ S

x 1 + x 2 , cx 1 ∈ T

Then x 1 + x 2 , cx 1 ∈ S

T. So S

T is a subspace. (6) Consider x ∈ L(S

T ).

x =

aj xj ; where xj ∈ S

T

Since ∀ xj ∈ S, then x ∈ L(S). Since ∀ xj ∈ T , then x ∈ L(T ). Thus x ∈ L(S)

L(T ). =⇒ L(S

T ) ⊆ L(S)

L(T )

(7) Example of when L(S

T ) 6 = L(S)

L(T ).

Suppose S = {x 1 , x 2 }, T = {x 3 } and x 1 + x 2 = x 3. S

T = ∅. L(S

T ) = ∅, but L(S)

L(T ) = {kx 3 |k ∈ R} = L(T )

Exercise 23.

(1) { 1 , eax, ebx}, a 6 = b

a 0 + a 1 eax^ + a 2 ebx^ = 0 dxd −−→ a 1 aeax^ + a 2 bebx^ = 0 or a 1 a = −a 2 be(b−a)x Since x arbitrary, a 1 = a 2 = 0. =⇒ { 1 , eax, ebx} independent. dimS = 3 (2) {eax, xeax} a 1 eax^ + a 2 xeax^ = 0 or a 1 = −a 2 x x arbitrary, so a 1 = a 2 = 0. {eax, xeax} independent. dimS = 2 (3) { 1 , eax, xeax}

a 0 + a 1 eax^ + a 2 xeax^ = 0 dxd −−→ aa 1 eax^ + a 2 eax^ + a 2 axeax^ = 0 aa 1 + a 2 + a 2 ax = 0 or a 2 ax = −(aa 1 + a 2 ) x arbitrary, so a 2 = 0, a 1 = 0

Then a 0 = 0 and so { 1 , eax, xeax} independent. dimS = 3 (4) {eax, xeax, x^2 eax}. a 0 eax^ + a 1 xeax^ + a 2 x^2 eax^ = 0 = a 0 + a 1 x + a 2 x^2 1 , x, x^2 are a subset of independent BPn and so 1 , x, x^2 are independent =⇒ a 0 = a 1 = a 2 = 0 , and so {eax, xeax, x^2 eax} independent. dimS = 3. (5) {ex, e−x, cosh x} cosh x = e

x+e−x 2 dependent.^ dimS^ = 2 (6) {cos x, sin x} a cos x + b sin x = 0 or b sin x = −a cos x If cos x = 0, then sin x = 1, so b = 0. Otherwise, b tan x = −a. But x arbitrary =⇒ a = 0, b = 0 So {cos x, sin x} independent. dimS = 2 (7) a cos^2 x + b sin^2 x = 0, so then if cos^2 x 6 = 0, we have b tan^2 x = −a. Since x is arbitrary, a = b = 0. Then {cos^2 x, sin^2 x} independent. dimS = 2 (8) { 1 , cos 2x, sin^2 x} cos 2x = 1 − 2 sin^2 x So the set is dependent. dimS = 2 , since { 1 , sin^2 x} independent ({cos^2 x, sin^2 x} were independent and 1 = cos^2 x + sin^2 x). (9) {sin x, sin 2x} a sin x + b sin 2x = sin x(a + b2 cos x) = 0 If sin x, cos x 6 = 0, a + b2 cos x = 0 or 2 b cos x = −a. Since x is arbitrary, a = b = 0 So then {sin x, sin 2x} is independent. dimS = 2 (10) {ex^ cos x, e−x^ sin x} aex^ cos x + be−x^ sin x = 0 or b tan x = −ae^2 x Since x arbitrary, a = b = 0. dimS = 2

Exercise 24.

(1) Consider BS , basis for S and BV basis for V. |BV | = n finite. If S is infinite-dimensional, then ∃ xn+1 ∈ BS s.t. xn+1 ∈ B/ V since BV finite. Then ∃ xn+1 ∈ S s.t. xn+1 ∈/ V. But S ⊆ V =⇒ S is finite-dimensional.

Consider BS = {x 1 ,... , xm} and BV = {y 1 ,... , yn}. ∀ xj , xj ∈ V , since S ⊆ V. Suppose m > n. Then BS linearly dependent, by Thm. 12.10 of Vol.1 (a.k.a. Thm. 1.7 of Vol. 2). This contradicts the fact that BS is an independent basis. =⇒ dimS ≤ dimV (2) If S = V , then by Thm. 12.10 of Vol.1, BS must also contain exactly n vectors, since it’s a basis for V = S.

If dimS = dimV , then since BS is a set of n linearly independent elements, it forms a basis for V. Then ∀ y ∈ V , y ∈ L(BS ) = S. V ⊆ S =⇒ V = S. (3) Use Thm. 12.10 of Vol.1 (a.k.a. Thm. 1.7 of Vol.2): Any set of linear independent elements is a subset of some basis for V. (4) Consider BV = {y 1 ,... , yn} Suppose {y 1 + y 2 , y 1 − y 2 } = BS y 1 + y 2 , y 1 − y 2 ∈ B/ V because if they were, they’d make BV dependent.

2.4 EXERCISES - LINEAR TRANSFORMATIONS AND MATRICES, NULL SPACE AND RANGE, NULLITY AND RANK

Exercise 1. T (x, y) = (y, x)

T (a(x 1 , x 2 )+b(y 1 , y 2 )) = T (ax 1 +by 1 , ax 2 +by 2 ) = (ax 2 +by 2 , ax 1 +by 1 ) = a(x 2 , x 1 )+b(y 2 , y 1 ) = aT (x 1 , x 2 )+bT (y 1 , y 2 )

T is linear. T (x, y) = (y, x) = 0. nullspaceT = { 0 }; kerT = 0 T (x, y) = (y, x) = y(1, 0) + x(0, 1). rangeT = V 2. rankT = 2 Exercise 2. T (x, y) = (x, −y)

T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (ax 1 + by 1 , −(ax 2 + by 2 )) = a(x 1 , −x 2 ) + b(y 1 , −y 2 ) = aT (x 1 , x 2 ) + bT (y 1 , y 2 )

T is linear. (x, −y) = 0. nullspaceT = { 0 }; kerT = 0 (x, −y) = x(1, 0) + −y(0, 1) rangeT = V 2 ; rankT = 2 Exercise 3. T (x, y) = (x, 0).

T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (ax 1 + by 1 , 0) = a(x 1 , 0) + b(y 1 , 0) = aT (x 1 , x 2 ) + bT (y 1 , y 2 )

T is linear. T (x, y) = (x, 0) = 0 =⇒ x = 0, y ∈ R. nullspaceT = L({(0, 1)}) kerT = 1 T (x, y) = (x, 0) = x(1, 0) rangeT = L({(1, 0)}). rankT = 1 Exercise 4. T (x, y) = (x, x)

T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (ax 1 + by 1 , ax 1 + by 1 ) = a(x 1 , x 1 ) + b(y 1 , y 1 ) = aT (x 1 , x 2 ) + bT (y 1 , y 2 )

T is linear. T (x, y) = (x, x) = 0 =⇒ x = 0, y ∈ R. nullspaceT = L({(0, 1)}) kerT = 1 T (x, y) = (x, x) = x(1, 1) rangeT = L({(1, 1)}). rankT = 1 Exercise 5. T (x, y) = (x^2 , y^2 )

T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = ((ax 1 + by 1 )^2 , (ax 2 + by 2 )^2 ) = = (a^2 x^21 , a^2 x^22 ) + (2abx 1 y 1 , 2 abx 2 y 2 ) + (b^2 y^21 , b^2 y^22 ) 6 = aT (x 1 , x 2 ) + bT (y 1 , y 2 )

T is not linear. Exercise 6. T (x, y) = (ex, ey^ )

T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (eax^1 +by^1 , eax^2 +by^2 ) 6 = aT (x 1 , x 2 ) + bT (y 1 , y 2 )

T is not linear. Exercise 7. T (x, y) = (x, 1)

T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (ax 1 + by 1 , 1) 6 = a(x 1 , 1) + b(y 1 , 1) = aT (x 1 , x 2 ) + bT (y 1 , y 2 )

Thus, rotations are linear transformations. nullspaceT = { 0 }. nullT = 0 rangeT = {(r, θ)}. rankT = 2 Exercise 12. T maps each point onto its reflection with respect to a fixed line through the origin.

We showed above that rotations are linear transformations. Then without loss of generality, consider reflection about the x-axis. T (a(x 1 , x 2 ) + b(y 1 , y 2 )) = (ax 1 + by 1 , −ax 2 − by 2 ) = a(x 1 , −x 2 ) + b(y 1 , −y 2 ) aT (x 1 , x 2 ) + bT (y 1 , y 2 ) = a(x 1 , −x 2 ) + b(y 1 , y − 2)

So reflection about the x axis is linear. Suppose R is the rotation of the fixed line into the x-axis and R is length preserving. Then for R−^1 T R, reflection about any fixed axis, (R−^1 is linear too, since it’s just a rotation in the opposite direction of R)

R−^1 T R(ax + by) = R−^1 T (aRx + bRy) = R−^1 (aT Rx + bT Ry) = aR−^1 T Rx + bR−^1 T Ry

T is linear. nullT = 0 nullspaceT = { 0 } rankT = 2 rangeT = {(x, y)} Exercise 13. T maps every point onto the point (1, 1).

T (ax + by) = (1, 1) 6 = aT (x) + bT (y) = (a + b)(1, 1) T is nonlinear. Exercise 14. T (r, θ) = (2r, θ)

T (x 1 ) + T (x 2 ) = 2r 1 eiθ^1 + 2r 2 eiθ^2 = 2(r 1 eiθ^ + r 2 eiθ^2 ) T (x 1 + y 1 ) = T (r 1 eiθ^1 + r 2 eiθ^2 ) so

|r 1 eiθ^1 + r 2 eiθ^2 | =

r 12 + r^22 + 2r 1 r 2 cos (θ 1 − θ 2 ) = |T (x 1 ) + T (x 2 )| we see that the argument remains unchanged, while the magnitude is multiplied by 2 in each case nullT = 0 nullspaceT = { 0 } rankT = 2 rangeT = {(r, θ)}

Exercise 15. T (a(r, θ)) = (ar, 2 θ) = a(r, 2 θ) = aT (r, θ).

Consider this counterexample, where x 1 = 1~ex, x 2 = 1~ex. Not linear. Exercise 16. T (x, y, z) = (z, y, x).

T (ax) = aT (x), T (x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) = (z 1 , y 1 , x 1 ) + (z 2 , y 2 , x 2 ) =⇒ linear T (x) = 0 when x = 0 nullspaceT = { 0 } rangeT = V 3 nullT = 0 rankT = 3

Exercise 17. T (x, y, z) = (x, y, 0).

T (a(x, y, z)) = a(x, y, 0) = aT (x, y, z); T (x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) = = (x 1 + x 2 , y 1 + y 2 , 0) = T (x 1 , y 1 , z 1 ) = T (x 2 , y 2 , z 2 ) =⇒ T linear T (x, y, z) = 0 if x = y = 0 nullspaceT = L({(0, 0 , 1)}) nullT = 1 rangeT = L({(1, 0 , 0), (0, 1 , 0)}) rankT = 2

Exercise 18. T (x, y, z) = (x, 2 y, 3 z).

T (ax) = (ax, 2 ay, 3 az) = aT (x); T (x 1 + x 2 ) = (x 1 + x 2 , 2(y 1 + y 2 ), 3(z 1 + z 2 )) = T (x 1 ) + T (x 2 ) T (x) = 0 when x = y = z = 0 nullspaceT = { 0 } nullT = 0 rangeT = V 3 rankT = 3

Exercise 19. T (x, y, z) = (x, y, 1).

T (x 1 ) + T (x 2 ) = (x 1 + x 2 , y 1 + y 2 , 2) 6 = T (x 1 + x 2 ) T is not linear. Exercise 20. T (x, y, z) = (x + 1, y + 1, z − 1)

T (ax + by) = (ax 1 + by 1 + 1, ax 2 + by 2 + 1, ax 3 + by 3 − 1) 6 = aT (x) + bT (y) = = a(x 1 + 1, x 2 + 1, x 3 − 1) + b(y 1 + 1, y 2 + 1, y 3 − 1)

Exercise 21. T (x, y, z) = (x + 1, y + 2, z + 3)

T (ax+by) = (ax 1 +by 1 +1, ax 2 +by 2 +2, ax 3 +by 3 +3) 6 = aT (x)+bT (y) = a(x 1 +1, x 2 +2, x 3 +3)+b(y 1 +1, y 2 +2, y 3 +3)

Exercise 22. T (x, y, z) = (x, y^2 , z^3 )

T (ax + by) = (ax 1 + by 1 , (ax 2 + by 2 )^2 , (ax 3 + by 3 )^3 ) = (ax 1 + by 1 , a^2 x^22 + 2abx 2 y 2 + b^2 y^22 , a^2 x^23 + 2abx 3 y 3 + b^2 y^23 ) 6 = 6 = aT (x) + bT (y) = a(x 1 , x^22 , x^23 ) + b(y 1 , y 22 , y 32 )

Exercise 23. T (x, y, z) = (x + z, 0 , x + y)

T (ax+by) = (ax 1 +by 1 +ax 3 +by 3 , 0 , ax 1 +by 1 +ax 2 +by 2 ) = a(x 1 +x 3 , 0 , x 1 +x 2 )+b(y 1 +y 3 , 0 , y 1 +y 2 ) = aT (x)+bT (y)

T is linear.

(x + z, 0 , x + y) = 0

x = −z x = −y (x, y, z) = x(1, − 1 , −1) =⇒ nullspaceT = L({(1, − 1 , −1)}) kerT = 1

(x + z, 0 , x + y) = (x + z)(1, 0 , 0) + (x + y)(0, 0 , 1) rangeT = L({(1, 0 , 0), (0, 0 , 1)}), rankT = 2 Exercise 24.

p(x) =

∑^ n

j=

aj xj

q(x) =

∑^ n

j=

bj xj

(p + q)(x) =

∑^ n

j=

(aj + bj )xj

cp(x) = c

∑^ n

j=

aj xj^ =

∑^ n

j=

caj xj

T (p + q) =

∑^ n

j=

(aj + bj )(x + 1)j^ =

∑^ n

j=

aj (x + 1)j^ +

∑^ n

j=

bj (x + 1)j^ = T (p) + T (q)

T (cp) =

∑^ n

j=

caj (x + 1)j^ = c

∑^ n

j=

aj (x + 1)j^ = cT (p)

T linear. Consider

∑n j=0 aj^ (x^ + 1)

j (^) = 0. Apply differentiation repeatedly to get aj = 0, ∀ j = 0,... , n.

nullspaceT∑ = { 0 }. nullT = 0. n j=0 aj^ (x^ + 1)

j (^) = ∑n j=0 bj^ x

j (^). rangeT = L({(x + 1)j (^) |j = 0,... , n}); rankT = n + 1

Exercise 25. On (− 1 , 1), f ∈ V ; g = T (f ), g(x) = xf ′(x)

T (f + g) = x(f ′^ + g′) = xf ′^ + xg′^ = T (f ) + T (g) T (af ) = x(af )′^ = axf ′^ = aT (f )

T (f ) = xf ′(x) = 0 x is arbitrary, consider x 6 = 0. f ′(x) = 0 =⇒ f (x) = c 0. nullspaceT = { 1 }, nullT = 1 rangeT = V rankT = dimV − 1 → ∞ Exercise 26. g(x) =

∫ (^) b a f^ (t) sin (x^ −^ t)dt^ for^ a^ ≤^ x^ ≤^ b

T (f + g) =

∫ (^) b

a

(f (t) + g(t)) sin (x − t)dt =

∫ (^) b

a

f (t) sin (x − t)dt +

∫ (^) b

a

g(t) sin (x − t)dt

T (cf ) =

∫ (^) b

a

cf (t) sin (x − t)dt

T is linear.

g(x) =

∫ (^) b

a

f (t)(s(x)c(t) − c(x)s(t))dt = s(x)

∫ (^) b

a

f (t)c(t)dt − c(x)

∫ (^) b

a

f (t)s(t)dt = k 1 s(x) + k 2 c(x)

RangeT = L({sin x, cos x}); rankT = 2

For the nullspace, now g(x) = s(x)

∫ (^) b a f^ (t)c(t)dt^ −^ c(x)^

∫ (^) b a f^ (t)s(t)dt. If we take a look at^ Exercise 29^ of this section, then we see the answer: by the orthogonality of sin’s and cos’s, sin nt and cos nt will be orthogonal to cos t and sin t for n = 2,.... So depending upon a and b, at least the integration over a period of 1 will result in zero for both

f c and

f s. Then for the “ends” of the integration bound that don’t make a full period, make f (t) = 0. Since n = 2, · · · → ∞ for sin nt, cos nt for the choice of f (t), nullspaceT = L({sin nt, cos nt|n = 2,... }), kerT = ∞

In general, (^) ∫ π

−π

c(nt)c(mt) =

∫ (^) π

−π

(cos (n − m)t + cos (n + m)t)dt = 0 + 0 = 0 ∫ (^) π

−π

s(nt)c(mt) =

∫ (^) π

−π

(sin (n + m)t + sin (n − m)t)dt = 0 + 0 = 0 ∫ (^) π

−π

s(nt)s(mt) =

∫ (^) π

−π

(cos (n − m)t − cos (n + m)t)dt = 0 + 0 = 0

So S contains the functions f (x) = cos nx and f (x) = sin nx, since they satisfy the requirements. (3) As seen above, the set BS = {sin nx, cos nx|n = 2,... } consists of orthogonal functions with an inner product defined as

over a period. Thus, they are independent of each other (orthogonal elements are independent). They belong to S and S, being a subspace, must include all linear combinations of them, and so S is at least infinitely dimensional, since it must contain BS in its basis. (4) T (V ) = g(x) =

∫ (^) π

−π

(1 + cos (x − t))f (t)dt =

∫ (^) π

−π

(1 + cos x cos t + sin x sin t)f (t)dt =

∫ (^) π

−π

f (t)dt +

(∫ (^) π

−π

cos tf (t)dt

cos x +

(∫ (^) π

−π

f (t) sin tdt

sin x

BT (V ) = { 1 , cos x, sin x}; rankT (V ) = 3 (5) T (S) = 0 =⇒ nullspaceT = S (6) T (f ) = cf. Note that cf ∈ BT (V ). T (1) = 2π(1) T (s) = πs T (c) = πc

Exercise 30. We want the following: Let T : V → W be a linear transformation of a linear space V into a linear space W. If

V is infinite-dimensional, prove that at least one of T (V ), or N (T ), is infinite-dimensional. Assume dimN (T ) = k, dimT (V ) = r. Let e 1 ,... , ek be a basis for N (T ). Let e 1 ,... , ek, ek+1,... , ek+n be independent elements in V , where n > r.

Consider x =

∑k+n j=1 aj^ ej

T (x) = aj

k∑+n

j=

T (ej ) = aj

k∑+n

j=k+

T (ej )(since e 1 ,... , ek ∈ N (T ))

x ∈ V , so T (x) ∈ T (V ). Since dimT (V ) = r, and n > r, {T (ej )|j = k + 1,... , k + n} must be dependent (Apostol’s Thm.1.5 of Vol.2: any set of r + 1 elements of a dim = r space is dependent).

Then ∃ {aj }, aj ’s not all zero, s.t.

k∑+n

j=k+

aj T (ej ) = T

k∑+n

j=k+

(aj ej ) = 0

k∑+n

j=k+

aj ej ∈ N (T ) so

k∑+n

j=k+

aj eJ =

∑^ n

j=

aj ej

∑k+n j=1 aj^ ej^ = 0^ is a nontrivial representation of^0. Then^ e^1 ,... , ek+n^ are dependent. Contradiction.

2.8 EXERCISES - INTRODUCTION, MOTIVATION FOR THE CHOICE OF AXIOMS FOR A DETERMINANT FUNCTION, A SET OF AXIOMS FOR A DETERMINANT FUNCTION, COMPUTATION OF DETERMINANTS,

Exercise 1. V = { 0 , 1 }

T 1 (0, 1) = 0, 0 T 2 (0, 1) = 0, 1 T 3 (0, 1) = 1, 0 T 4 (0, 1) = 1, 1

0 , 1 T 1 T 2 T 3 T 4

T 1 0 , 0 0 , 0 1 , 0 0 , 0

T 2 0 , 0 0 , 1 1 , 0 1 , 1

T 3 1 , 1 1 , 0 0 , 1 0 , 0

T 4 1 , 1 1 , 1 1 , 1 1 , 1

T 2 , T 3 are one-to-one, by inspection. T 2 − 1 = T 2 ; T 3 − 1 = T 3

Exercise 2. V = { 0 , 1 , 2 }. Note, there are obviously 33 = 27 possible ranges and thus 27 possible functions (since for each

element in V , there are 3 possible values it could be mapped to). Consider only the 6 that are one-to-one (choice of 3 values, then 2 values, then 1 value at each subsequent stage).

T 1 (0, 1 , 2) = 0, 1 , 2

T 2 (0, 1 , 2) = 0, 2 , 1

T 3 (0, 1 , 2) = 1, 0 , 2

T 4 (0, 1 , 2) = 1, 2 , 0

T 5 (0, 1 , 2) = 2, 0 , 1

T 6 (0, 1 , 2) = 2, 1 , 0

0 , 1 , 2 T 1 T 2 T 3 T 4 T 5 T 6

T 1 0 , 1 , 2 0 , 2 , 1 1 , 0 , 2 1 , 2 , 0 2 , 0 , 1 2 , 1 , 0

T 2 0 , 2 , 1 0 , 1 , 2 2 , 0 , 1 2 , 1 , 0 1 , 0 , 2 1 , 2 , 0

T 3 1 , 0 , 2 1 , 2 , 0 0 , 1 , 2 0 , 2 , 1 2 , 1 , 0 2 , 0 , 1

T 4 1 , 2 , 0 1 , 0 , 2 2 , 1 , 0 2 , 0 , 1 0 , 1 , 2 0 , 2 , 1

T 5 2 , 0 , 1 2 , 1 , 0 0 , 2 , 1 0 , 1 , 2 1 , 2 , 0 1 , 0 , 2

T 6 2 , 1 , 0 2 , 0 , 1 1 , 2 , 0 1 , 0 , 2 0 , 2 , 1 0 , 1 , 2

T 1 − 1 = T 1

T 2 − 1 = T 2

T 3 − 1 = T 3

T 4 − 1 = T 5

T 5 − 1 = T 4

T 6 − 1 = T 6

Exercise 3. T (x, y) = (y, x) Suppose T (x 1 , y 1 ) = (y 1 , x 1 ) = T (x 2 , y 2 ) = (y 2 , x 2 ).

Then y 1 = y 2 , x 1 = x 2 → (x 1 , y 1 ) = (x 2 , y 2 )

T is one-to-one on V ; T (V 2 ) = V 2 , (u, v) = (y, x)

T −^1 = T (by inspection). Exercise 4. T (x, y) = (x, −y)

Suppose T (x 1 , y 1 ) = (x 1 , −y 1 ) = T (x 2 , y 2 ) = (x 2 , −y 2 ) Then x 1 = x 2 , −y 1 = −y 2 or y 1 = y 2 =⇒ (x 1 , y 1 ) = (x 2 , y 2 )

T is one-to-one on V , T (V 2 ) = V 2 , (u, v) = (x, −y)

T −^1 = T Exercise 5. T (x, y) = (x, 0).

Note that T (x, 1) = (x, 0) = T (x, 2). T is not one-to-one. Exercise 6. T (x, y) = (x, x). Note that T (x, 1) = T (x, 2) = (x, x). T is not one-to-one.

Exercise 7. T (x, y) = (x^2 , y^2 ). T (x, y) = T (x, −y) = (x^2 , (−y)^2 ) = (x^2 , y^2 ). T is not one-to-one.

Exercise 8. T (x, y) = (ex, ey^ ).

Suppose T (x 1 , y 1 ) = T (x 2 , y 2 ). Then ex^1 = ex^2 , ey^1 = ey^2 and since ex^ is one-to-one, ∀ x ∈ R, x 1 = x 2.

T is one-to-one. u = ex, v = ey^ , u, v ∈ R+. T −^1 (x, y) = (ln x, ln y)

Exercise 9. T (x, y) = (x, 1) T (x, 1) = T (x, 2) = (x, 1), so T is not one-to-one.

Exercise 10. T (x, y) = (x + 1, y + 1).

If T (x 1 , y 1 ) = (x 1 + 1, y 1 + 1) = T (x 2 , y 2 ) = (x 2 + 1, y 2 + 1), then x 1 = x 2 , y 1 = y 2 , (x 1 , y 1 ) = (x 2 , y 2 ). T is one-to-one. u = x + 1, v = y + 1. T −^1 (x, y) = (x − 1 , y − 1) Exercise 11. T (x, y) = (x − y, x + y).

If T (x 1 , y 1 ) = (x 1 − y 1 , x 1 + y 1 ) = T (x 2 , y 2 ) = (x 2 − y 2 , x 2 + y 2 ) x 1 − y 1 = x 2 − y 2 x 1 + y 1 = x 2 + y 2

then x 1 = x 2 , y 1 = y 2. T is one-to-one. u = x − y v = x + y T (V 2 ) = L({(1, 1), (− 1 , 1)}); T −^1 (x, y) =

( (^) x+y 2 ,^

−x+y 2

Exercise 12. T (x, y) = (2x − y, x + y)

If T (x 1 , y 1 ) = (2x 1 − y 1 , x 1 + y 1 ) = T (x 2 , y 2 ) = (2x 2 − y 2 , x 2 + y 2 ) 2 x 1 − y 1 = 2x 2 − y 2 x 1 + y 1 = x 2 + y 2 so

x 1 = x 2 y 1 = y 2 T is one-to-one. u = 2x − y v = x + y

T (V 2 ) = L({(2, 1), (− 1 , 1)}). T −^1 (x, y) =

x+y 3 ,^

x− 2 y − 3

Exercise 13. T (x, y, z) = (z, y, x)

If T (x 1 , y 1 , z 1 ) = (z 1 , y 1 , x 1 ) = T (x 2 , y 2 , z 2 ) = (z 2 , y 2 , x 2 )

then

z 1 = z 2 y 1 = y 2 x 1 = x 2

=⇒ T is one-to-one.

T (V 3 ) = V 3 , u = z, v = y, w = z. T −^1 = T

(ST )n^ = (ST )(ST )n−^1 = · · · = (ST )... (ST ) ︸ ︷︷ ︸ n times

= (ST )... (ST )(ST ) = (ST )... (S(T S)T ) = (ST )... (ST )(SST T ) = · · · =

= SST (ST )... (ST )T = · · · = SnT n

Exercise 23. (T −^1 S−^1 )(ST ) = T −^1 S−^1 ST = T −^11 T = 1, so (ST )−^1 = T −^1 S−^1. Its uniqueness is guaranteed by

theorem (left inverses, if they exist, are unique). Exercise 24. (ST )−^1 ST = (ST )−^1 T S = 1.

Since left inverses are unique (this theorem is important to use here), then (T S)−^1 = (ST )−^1 =⇒ S−^1 T −^1 = T −^1 S−^1 Exercise 25.

(S + T )(S + T ) = S^2 + ST + T S + T 2 = S^2 + 2ST + T 2 (S + T )^3 = (S^2 + ST + T S + T 2 )(S + T ) = S^3 + ST S + T S^2 + T 2 S + S^2 T + ST 2 + T ST + T 3 = = S^3 + 3S^2 T + 3T 2 S + T 3

Exercise 26.

S(x, y, z) = (z, y, x) T (x, y, z) = (x, x + y, x + y + z) (1) (ST ) = (x + y + z, x + y, x) (T S) = (z, z + y, x + y + z) ST − T S = (x + y, x − z, −y − z) S^2 = 1

T 2 = (x, 2 x + y, 3 x + 2y + z) (ST )^2 = (3x + 2y + z, 2 x + 2y + z, x + y + z) (T S)^2 = (x + y + z, x + 2y + 2z, x + 2y + 3z) (ST − T S)^2 = (2x + y − z, x + 2y + z, −x + 2z + y) (2) If S(x 1 , y 1 , z 1 ) = (z 1 , y 1 , x 1 ) = S(x 2 , y 2 , z 2 ) = (z 2 , y 2 , x 2 ), then z 1 = z 2 , y 1 = y 2 , x 1 = x 2 If T (x 1 , y 1 , z 1 ) = (x 1 , x 1 + y 1 , x 1 + y 1 + z 1 ) = T (x 2 , y 2 , z 2 ) = (x 2 , x 2 + y 2 , x 2 + y 2 + z 2 ), then x 1 = x 2 , y 1 = y 2 , z 1 = z 2. Thus S, T are one-to-one. (S−^1 ) = S (T −^1 )(x, y, z) = (x, y − x, z − y) (ST )−^1 = T −^1 S−^1 = T −^1 S T −^1 S(x, y, z) = (z, y − z, x − y) (T S)−^1 = S−^1 T −^1 S−^1 T −^1 (x, y, z) = S(x, y − x, z − y) = (z − y, y − x, x)

(T − 1)(x, y, z) = (0, x, x + y) (T − 1)^2 (x, y, z) = (0, 0 , x) (T − 1)^3 (x, y, z) = (0, 0 , 0) and for all higher powers

Exercise 27. T (p) = q(x) =

∫ (^) x 0 p(t)dt

DT (p) = d dx

∫ (^) x

0

p(t)dt = p(x) (by first fundamental thm. of calculus)

T D(p) =

∫ (^) x 0 dtp

′(t)

Suppose p = x + 1, p′^ = 1.

∫ (^) x 0 dt1 =^ x^6 =^ p nullspaceT D = {c 0 | where c 0 ∈ R} rangeT D = { all polynomials p s.t. p(0) = 0 }

Exercise 28. Let V be linear space of all real polynomials p(x). D ≡ differential operator T is a linear map from p(x) onto xp′(x) (1) p(x) = 2 + 3x − x^2 + 4x^3 D, T, DT, T D, DT − T D, T 2 D^2 − D^2 T 2. Dp = 3 − 2 x + 12x^2 T p = 3x − 2 x^2 + 12x^3 DT p = 3 − 4 x + 36x^2 T Dp = − 2 x + 24x^2

DT − T D = 3 − 2 x + 12x^2 T 2 D^2 − D^2 T 2 = 24x − (−8 + 216x) = 8 − 192 x

(2) We want T (p) = p. Try p =

∑n j=0 aj^ x

j (^).

T (p) = x

∑^ n

j=

jaj xj−^1 =

∑^ n

j=

jaj xj^ =

∑^ n

j=

aj xj^ =⇒

∑^ n

j=

aj (j − 1)xj^ = 0

aj (j − 1)xj^ = 0

=⇒ j = 1

p = a 1 x (3) We want (DT − 2 D)(p) = 0 or DT (p) − 2 D(p)

DT (p) =

∑^ n

j=

j^2 aj xj−^1 = 2

∑^ n

j=

jaj xj−^1 =⇒

∑^ n

j=

(j^2 − 2 j)aj xj−^1 =

∑^ n

j=

j(j − 2)aj xj−^1 = 0

j = 2, 0 so that p = a 2 x^2 + a 0

(4) We want (DT − T D)n(p) = Dn(p).

D

∑^ n

j=

aj xj^ =

∑^ n

j=

jaj xj−^1

(DT )

∑^ n

j=

aj xj^ =

∑^ n

j=

j^2 aj xj−^1

T D =

∑^ n

j=

j(j − 1)aj xj−^1

(DT − T D)p =

∑^ n

j=

jaj xj−^1 = Dp

Dn^ = (DT − T D)n^ ∀ p ∈ V

Exercise 29. xp(x). T (p) = xp.

DT (p) = D(xp) = p + xp′ T D(p) = T p′^ = xp′^

=⇒ (DT − T D)(p) = p

T n(p) = T n−^1 (xp) = · · · = T (xn−^1 p) = xnp DT n(p) = nxn−^1 p + xnp′ T nD(p) = T n(p′) = T n−^1 (xp′) = · · · = T (xn−^1 p′) = xnp′^

=⇒ (DT n^ − T nD)(p) = nxn−^1 p = nT n−^1 (p)

Exercise 30.

n = 1, ST − T S = 1 n = 2, ST 2 − T 2 S = ST 2 + T (1 − ST ) = T + T = 2T Assume the nth case, ST n^ − T nS = nT n−^1 ST n+1^ − T n+1S = ST nT + T n(1 − ST ) = (nT n−^1 )T + T n^ = (n + 1)T n

Exercise 31. p(x) =

∑n j=0 cj^ x

j (^).

Rp = r = r(x) = p(0)

Sp = s = s(x) =

∑^ n

k=

ckxk−^1

T p = t = t(x) =

∑^ n

k=

ckxk+

(1) p(x) = 2 + 3x − x^2 + x^3. We want to know R, S, T, ST, T S, (T S)^2 , T 2 S^2 , S^2 T 2 , T RS, RST.

Rp = p(0) = 2 Sp = 3 − x + x^2 T p = 2x + 3x^2 − x^3 + x^4

ST (p) = 2 + 3x − x^2 + x^3 T S(p) = 3x − x^2 + x^3 (T S)^2 (p) = 3x − x^2 + x^3

T 2 S^2 = T 2 (−1 + x) = −x^2 + x^3 S^2 T 2 = S^2 (2x^2 + 3x^3 − x^4 + x^5 ) = 2 + 3x − x^2 + x^3 T RSp = 3x RST p = 2

(2) R, S, T linear? R(c 1 p 1 + c 2 p 2 ) = (c 1 p 1 + c 2 p 2 )(0) = c 1 p 1 (0) + c 2 p 2 (0) = c 1 R(p 1 ) + c 2 R(p 2 )