Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Resolução do livro Introdução à Mecânica dos Fluidos, do Fox,Pritchard e McDonald, Provas de Mecânica

Capítulos 07 ao 13

Tipologia: Provas

2011

Compartilhado em 06/11/2011

carlos-eduardo-melo-pereira-5
carlos-eduardo-melo-pereira-5 🇧🇷

4.8

(19)

1 documento

1 / 1079

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Problem 7.1 [2]
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Pré-visualização parcial do texto

Baixe Resolução do livro Introdução à Mecânica dos Fluidos, do Fox,Pritchard e McDonald e outras Provas em PDF para Mecânica, somente na Docsity!

Given: (^) Equations Describing pipe flow

Find: (^) Non-dimensionalized equation; Dimensionless groups

Solution:

Nondimensionalizing the velocity, pressure, spatial measures, and time:

L

V t t L

r r L

x x p

p p V

u u = = = Δ

*= *= * * *

Hence

        • t * V

L u = Vu ppp x = Lx r = Dr t =

Substituting into the governing equation

⎟ ⎠

⎞ ⎜

⎜ ⎝

∂ =− Δ ∂

1

1 *

1 1 *

2

2

(^2) r

u

r r

u

D

V x

p

L

p t

u

L

V V t

u ν ρ

The final dimensionless equation is

⎟ ⎠

⎞ ⎜

⎜ ⎝

∂ ⎟ ⎠

⎞ ⎜ ⎝

⎛ ⎟ ⎠

⎞ ⎜ ⎝

Δ ∂ =− ∂

1

2

2

(^2) r

u

r r

u

D

L

x DV

p

V

p

t

u ν

ρ

The dimensionless groups are

D

L

V DV

p ν

ρ 2

Δ

Given: (^) Equation for unsteady, 2D compressible, inviscid flow

Find: (^) Dimensionless groups

Solution:

Denoting nondimensional quantities by an asterisk

0

0

0 0 0

L Lc

tc t c

c c c

v v c

u u L

y y L

x x

Note that the stream function indicates volume flow rate/unit depth!

Hence

0

0 0 0 ψ^ Lc^ ψ

c

Lt x = Lx y = Ly u = c u v = c v c = c c t = =

Substituting into the governing equation

3 2 0 2

2 2 2

3 0 2

2 2 2

3 0

3 2 2 0 2

3 2 0 = ∂ ∂

x y

u v L

c

y

v c L

c

x

u c L

c

t

u v

L

c

L t

c ψ ψ ψ ψ

The final dimensionless equation is

2

2

2 2 2 2

2 2 2

2 2

2

2

∂ ∂

x y

u v y

v c x

u c t

u v

t

No dimensionless group is needed for this equation!

Given: (^) That drag depends on speed, air density and frontal area

Find: (^) How drag force depend on speed

Solution:

Apply the Buckingham Π procedure

c F V ρ A n = 4 parameters

d Select primary dimensions M , L , t

e

2 2 3

L L

M

t

L

t

ML

F V ρ A

r = 3 primary dimensions

f V ρ A m = r = 3 repeat parameters

g Then nm = 1 dimensionless groups will result. Setting up a dimensional equation,

( ) 000 2

2 3

1

M L t t

ML L L

M

t

L

V AF

c

a b

a b c

⎟^ = ⎠

⎞ ⎜ ⎝

⎛ ⎟ ⎠

⎞ ⎜ ⎝

Π = ρ

Summing exponents,

: 2 0 2

: 3 2 1 0 1

: 1 0 1

− − = = −

− + + = =−

  • = =−

t a a

L a b c c

M b b

Hence

V A

F (^1) ρ 2 Π =

h Check using F , L , t as primary dimensions

[ ] 1 2 2

2

4

(^1 ) Π = =

L t

L

L

Ft

F

The relation between drag force F and speed V must then be

2 2 F ∝ρ V AV

The drag is proportional to the square of the speed.

Π 1 = =[ ] 1 FL

FL

[ ] 1

2 Π 2 = = F

t

L

L

Ft

Π 3 = = [ ] 1 F

L

L

F

Note: Any combination of Π1, Π 2 and Π 3 is a Π group, e.g., (^3)

2

1

e

T

, so Π1, Π 2 and Π 3 are not unique!