Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Resolução Calculo 2 Stewart, Provas de Engenharia Civil

Resolução do livro de calculo 2 do Stewart

Tipologia: Provas

2013

Compartilhado em 02/04/2013

ingrid-oliveira-5
ingrid-oliveira-5 🇧🇷

4.2

(13)

2 documentos

1 / 661

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Physics
ACT
http://PHYSICSACT.wordpress.com
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Pré-visualização parcial do texto

Baixe Resolução Calculo 2 Stewart e outras Provas em PDF para Engenharia Civil, somente na Docsity!

Physics

http://PHYSICSACT.wordpress.comACT

Physics ACT http://PHYSICSACT.wordpress.com 171 0] PARAMETRIC EQUATIONS AND POLAR COORDINATES DJ ET1O 11.1 Curves Defined by Parametric Equations ET 101 1 l+vL y—? dt 0 Scost=0 4) > cost-0 => L=Tor3 Wecheckthutt = 3º satisfies (1) and (2) but t = Z does not. So the only coltision point occurs when é = x and this gives the point (—3, 0). [We could check our work by graphing 2 and 22 together as functions of £ and. on another plot, 4 and go as functions of t. IÊ we do so. wwe see that the only value of t for which both pairs of graphs intersectis £ = 27.) (c) The cirele is centered at (3, 1) instead of (3,1). There are still 2 interscetion points: (3,0) and (2.1,1.4). bur there are no collision points. since (x) in part (b) becomes ácost = 6 = cost=8>1. 44, (a) 1a = 30º and vo = 500 m/s. then the equations become 7 = (500 cos 30º)t = 250 V/3t and = (500 sin 30º) - 3 (9.8)? = 250t — 4.98”. y = O when t = O (when the gun is fired) and again when t- E$ = ls. Thena — (2503) (22) m 22.092 m. so the bullet hits the ground about 22 km from the gun. The formula for q is quadratic in t. To find the maximum g-value, we will complete the square: u=A9(P - 2804) = -aofe 20 4 (125) d + ME 4 g(p— 123? 10 r25t with equality when é = 125 s, so the maximum beight attained is 128º 128ê a 3189m dO 2 CHAPTERIM PARAMETRIC EQUATIONS AND POLAR COORDINATES ET CHAPTER 10 (b) 14,000 Asa (Dº t— vocosa 12 z gfoz NY g v=(wsinalt- ig? > y=(wsina —-S(>— | = (tanaja — (so |e2, vo (tema dot? + vo (sina ão -$( E) (nojo (qr 8s 7) which is the equation of a parabola (quadratic in 2) 4=Py= 3 — ct, We use a graphing device to produce the graphs for various values of ce with x Lt < 7 Note that all the members of the family are symmetric about the z-axis. For e < 0, the graph does not cross itself, but for e = Oithas à cusp at (0,0) and for c > O the graph crosses itself at — , so the loop grows larger as e increases. 3 l 3 q 96. 2=2ct— 48,y = —et? + 34. We use a graphing device to produce the graphs for various values of e with -n O, the graph crosses iiself at the origin, and has two cusps below the x-axis. The size of the “swallowrail” increases as c increases. 12 O CHAPTERIM PARAMETRIC EQUATIONS AND POLAR COORDINATES ET CHAPTER 10 LABORATORY PROJECT Running Circles Around Circles 1. The center Q of the smaller circle has coordinates ((a — bJcos8, (a — b)sin 0). Are P'S on circle C has length 28 since itis equal in length (9 arc AS (the smaller circle rolls without slipping against the q larger.) Thus, ZPQS -- 5? and ZPQT = 5 — 8,50 P has coordinates HT z= (a beosf +bcos(ZPQT) = (a — bJcos6 + bess( — *s) and 4 =(a-b)sing - bsin(ZPQT) = (a — b)sinf — bsin “os mn With b = 1 and a positive integer greater than 2, we obtain a hypocycloid of a » cusps. Shown in the figure is the graph for a = 4. Leta = 4and b = 1. Using the sum identities to expand cos 38 and sin 38, we obtam 2 — Bcos8 + cos30 - Bcos8 + (Acos? 8 — Bcosf) = 4costg NO ax and y=3sinô — sin30 = 3sin6 — (3sinO — 4sin? 6) = 4sin" 8 s The following graphs are obtained with b = Land a = 5. 4, 4. and dy wilh —2m < 8 < 2m. We conclude that as the denominator d increases, the graph gets smaller, but maintains the basic shape shown. Gleje Letting d = 2andr = 3,5.and 7 with 27 < 0 < 2 gives us the following: E LABORATORY PROJECT RUNNING CIRCLES AROUND CIRCLES CD 13 So if dis held constant and n varies. we get a graph with 7 cusps (assuming 1:/d is in lowest form) When a — d+ 1, we obtain a hypocyeloid of n cusps. As n increases. we must expand the range of O in order to get 3 a closcd curve. The following graphs have a = 3, à .and jo. It 4. Wfb= 1, the equations for the hypocycloid are z=(a-1)cos8 + cos((a— 1)0) —1)sing —sin((a— 1)0) which is a hypocycloid of a cusps (from Problem 2). In general. ifa > 1, we geta figure with cusps on the “outside ring” andifa < 1, the cusps are on the “inside ring”. In any case. as the values of É get larger. we get a figure that looks more and more like a washer. IF we were to graph the hypocycloid for all values of 8, every point on the washer would eventually be arbitrarily close to à point on the curve. a=v2 -107 <8<10r 0S0< 44 sm The center Q of the smaller circle has coordinates ((a + b) cosê, (a + b) sin 8). Are PS has length a8 (as in Problem 1) so that ZPQS = se LPQR=T— El and " 4 cpQr=a S-0=1— (E) simee nor 0 Thus, the coordinates of P are z= (0-4 b)cost + beos (x — Sto) = (0-4 bjcoso — beos( 2a) and y= (e bjaind = batn( — co) (o-4bjaino — boin( 2 ). SECTION 11.2 CALCULUS WITH PARAMETRIC CURVES ETSECTIONAZ DO 15 11.2 Caleulus with Parametric Curves ET 10.2 5 dy dr 2 and — du/dt 5 Lz=t Py=2-5 > Er ="S=1-Sa DO = dafdi ID3R "3071 dy + ti A dy dyfdt re =teuv— E = and SÉ — = . Ro=idiy=ite & q=ité gt + ands gg ia a dy dyjdt 3841 Seth y=P+gt-— = 46º and dO wu dufát . Cdajdo 4 Whent=—1, (2,9) = (2.—2) and dy/de = —1, so an equation of the tangent to the curve at the point correspondingtot = —1isy—( B)=(-Ix-2).cry=-z 2. dy — dude El ypnç=a, =? 1Bott- - = Ae=22+1y=i-tt=3 de dede E and 20 (2,3) = (19.6) and dy/dz = É = 2.50 an equation of the tangentlineisy — 6 = (x — 19), ory= 2-2, dy x 2 de ef “ef -“Wê:t= S=l-S=1-*ÍD=>—= and ar-efy=t-míit=1 de E Ed ae dy dyjdto 1-2 MMA º dy Gb = GRE DAT dE O E When = 1 (2.0) = (6.1) ama Gi É, soam equation oie tangentlineisy—-1=-?(r—e)ory=-Zr+3. 62=co8 +ein3o. p- simbpcosdh6=0. SE E a . When0=0, (2,4) = (1.1) and dy/dz = 3. so an equation of the tangent to the curveis gy — 1 dy de dy dyjdt Mt-1) 7 = =(t-D2(I. S=26-1.5 =e.and É = ES — . (ga=eiy=(E- DÊ == 1) 77 = e! and TO dj E ck At(L,1).t = Oand E = —2, so an equation of the tangentisy — 1 = 2 — 1),ory = Dr +43. be=e > t=nesoy- E DP = (na ntand O = ama 1) (3). When a z z d Ea =U=1)(1) = —2, so an equation of the tangent is y = —2x + 3. as in part (a) 8 (De=tand. ysec6: (1,05) E - du/do secbtanô tanô do > dejdo T seg T socê — “inê When (2.4) = (1,V2).8 = Z (or Z + 2mn for some integer n), so dy/da = sin 7 = 2/2. Thus, an equation of the tangent t0 the curve is y — 2 = (V2/2)(x — 1),0ry = (V2/2) + (V2/2). (b) tan0 1 seto > orient 5 mn. 2a 3 When (2,4) = (1, 3). “A” Bs an equation of the tangentis y — 3 = (V2/2)(z — 1), as in part (a). 16 Vl CHAPTERA PARAMETRIC EQUAFIONS AND POLAR COORDINATES ET CHAPTER 10 92 =2sin2ty-2sint; (V31) 25 dy dy/dt 2cost cost E O - 2 m 3,1) com E de dajdi 2-Icos% eos be point (/3, 1) comesponds 3.1) toé so the slope of the tangent at that point is = -3 3 3 . 2 = RE An equation of the tangent is therefore (y-)= Er v3.oyo . -25 10. x =sint.y = sin(t + sint): (0.0). E 1 dy dujdt cos(t+siniL+cost) . ; — Geddi : = (sect + 1) cos(t + sint) ui 1 Note that there are two tangents at the point (0, 0), since both t = 0 and £ = 7 correspond to the origin. The tangent corresponding to t = O has slope (sec 0 + 1) cos(0 + sin 0) = 2cos O = 2, and ils equation is IR] y = 22. The tangent corresponding to £ = x has slope (seca + 1) cos(x + sin x) = 0, so itis the x-axis. , dy dyjdt R+SÊ 3 =P+8 — Gui =1+54 PESE ÃO qr O dejde En to = 2 4 a E 7) fu d (dy) dldylda)/dt (ala) + dt) s/2 É. The curve is CU en CE > O, thats. da? arde defdt E ER de whent > 0. didi % Rr-P-1my=8-1 dy — qui > do O dr/dt BÊ-I2 (2º) (32 — 12)-2.. 2468) ? HA de E 42º (42 4 2z dy dthde/ (se — 1232 = c6É-M n6( +4) cu +a) Thus, the curve is dr? Tde/dt 32-12 (Ge -12P BA o(a) CUwhent?-4<0 +» f<2 =» -D0] > t<0 dy dyjdt =1/t tdo 2 - =. dos - - -1- - Ma=támtv=tobi > = aj TIE 41 Wi (8) alta) a(uy df 2 : ty dilde) (di tri) BAI 2 o me curve is CU for allt in its domain that das dejdt IFIA (+ 0/0 É UAI is.t> 0 ft < —1 notin domain). 18 DD CHAPTERI1 PARAMETRIC EQUATIONS AND POLAR CODHOINATES ET CHAPTER 10 20. «= 0830, y = 2sinb. dy/dê=2cos0,sody/dg=0 & 0= E + nm (naninteger) + (2.4) (0,42) Also, de/dO = sin, sodr/d9=0 & 30-n7 & 0=En & (2,9) = (E1,0)or (+, +v3). The curve has horizontal tangents at (0, +2). and vertical tangents at (+1,0). (+1,-3) and (41,43). (0 6=7 - 247 5 (13) 6-2 +2mm— 21. From the graph, it appears that the leftmost point on the curve x = 4! — 2, 12 y = t+ Int is about (—0.25, 0.36). To find the exact coordinates, we find the value of é for which the graph has a vertical tangent, that is. -03 das O=dydi=4é Ho 2(2-1)=0 & m(v2t+ 1)(V24-1)=0 e 4=00r55j. The negative and -25 O roots are inadmissible since y(t) is only defined for £ > 0, so the leftmost point must be (e(6h) vo(5a)) = (685) (6) tina) = (chat) 22. The curve is symmetric about the line [LEO 11.368 y = —a since replacing é with! has the - effect of replacing (12,4) with (—y, 2). so if we can find the highest point (xa, yh). then the lefimost point is (ur, qu) = (—gm, —n). Alter caretully ai 33 zooming in, we estimate that the highest point on the curve o = tef,y = te "tis about (2.7, 0.37). To find the exact coordinates of the highest point, we find the value of + for which the curve has a horizontal tangent. tatisdyfdt=0 & doe )+et=0 & (Lone! =0 «+ t=1 This corresponds to the point (2(1).84(1)) = (8, 1/6). To find the lefimost point, we find the value of é for wtiich O = dir /dt = te* + ts (1+8e!=0 €& E=—1, This corresponds to the point (n(=1).y(—1)) = (—1/e.—e). Ast— —o0, x(t) = te” — 07 by FHospital's Rule and y(t) = te” * — —o0. so the g-axis is an asymptote. As É — 00, a(t) — oo and y(f) — 0%, so the a-axis is the other asymptote. The asymptotes can also be determined from the graph. if we use a larger t-interval. 2. 2a. 28. 26. SECTION 11.2 CALCULUS WITH PARAMETRIC CURVES ET SEGTION 10,2 Ds We graph the curve rn =" 28! —2fº. Os 75 y=t. tin the viewing rectangle À [-2, 1.1! by |-0.5, 0.5]. This reciangle ; u corresponds approximately to te [-1,0.8]. We estimate that the curve -85 3 os - has horizontal tangents at about (1.0.4) and (=0.17. 0.39) and vertical tangents at about (0, 0) and (-0.19,0.37). We calculato dy — dyldt 32.1 ' . = a “ 4a É = — ED — The horizontal tangents occur when dy/dt= 34" -1=0 & t=I so de da 02 -A E vi a both horizontal tangents are shown in our graph. The vertical tangents occur when dz /de — 24(22º — 3t —2)=0 e mu+M(t-2)=0 & t=0, à or 2. seems that we have missed one vertical tangent, and indeed if xe plot the curve on the t-interval [-1.2, 2.9] we see that there is another vertical tangent at (—8, 6) We graph the curve = tp 4º - 8º, 14 55 y = 22. tin the viewing rectangle [-3.7,0.2] by [-0.2, 1.4]. Itappears that there is a horizontal tangent at about + 4 ca -37 02 (=0.4, - 0.1). and vertical tangents at “mo £ o about (—3.1) and (0,0). -02 dy dyjdt 4-1 We calculo TO = SÃTT — qr age = 190 “O here isa horizontal tangene where dyjdt=8-1=0 & t= à. This point (the lowest point) is shown in the first graph. There are vertical tangents where dajt=4 HIM -16=0 & gra 4)=0 & 4tt+A4Xt—1)=0. We have missed one vertical tangent corresponding to t = —4, and if we plot the graph for £ E |—5, 3], we see that the curve has another vertical tangent line at approximately (— 128,36). v=costg=sinteost. E =-sint, Gi =-simt+cost=cos%. (7y)=(0,0) & cst=0 & t is an odd multiple of Z. When t — TSE = —Land $i = 1.50 =] Whent=r &=land$=-1 SoSl=-1. Thus. 4=