









Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Saiba todas as características importantes dos motores síncronos, suas vantagens ecomômicas e operacionais, além de suas aplicações e como são utilizados na indústria elétrica. Este documento aborda o funcionamento básico do motor síncrono, sua velocidade síncrona, a sincronia entre rotor e estator, os conjugados e a partida do motor.
Tipologia: Notas de estudo
1 / 16
Esta página não é visível na pré-visualização
Não perca as partes importantes!
onde o prefixo SIN significa “com” e CRONOS é uma palavra que denota “tempo”. Um motor síncrono literalmente opera “em tempo com” ou “em sincronismo com” o sistema de alimentação. Os motores síncronos estão sendo utilizados com maior freqüência pelas indústrias, devido ao fato de possuírem características especiais de funcionamento. O alto rendimento e o fato de poderem trabalhar como compensador síncrono para corrigir o fator de potência da rede, se destacam como os principais motivos que resultam na escolha dos MOTORES SÍNCRONOS para acionamento de diversos tipos de cargas. Altos torques, velocidade constante nas variações de carga e baixo custo de manutenção, também são características especiais de funcionamento que proporcionam inúmeras vantagens econômicas e operacionais ao usuário. Princípio de Funcionamento Os motores síncronos possuem o estator e os enrolamentos de estator (armadura) bastante semelhante aos dos motores de indução trifásicos. Assim como no motor de indução, a circulação de corrente no enrolamento distribuído do estator produz um fluxo magnético girante que progride em torno do entreferro. Campo girante do estator - Quando uma bobina é percorrida por uma corrente elétrica, é criado um campo magnético dirigido conforme o eixo da bobina e de valor proporcional à corrente. Na figura 1 está indicado a forma de onda de um sistema trifásico equilibrado constituido por três conjuntos de bobinas dispostas simetricamente no espaço formando um ângulo de 120º. A figura 2 está representando o enrolamento de um motor trifásico. Se este enrolamento for alimentado por um sistema trifásico, as correntes I 1 , I 2 e I 3 criarão, do mesmo modo, os seus próprios campos magnéticos H 1 , H 2 e H 3. Estes campos são espaçados entre si de 120º. Além disso, como são proporcionais às respectivas correntes, serão defasados no tempo, também de 120º entre si. O campo total H resultante, a cada instante, será igual à soma gráfica dos três campos H 1 , H 2 e H 3 naquele instante. Na figura 3, está representada esta soma gráfica para seis instantes sucessivos.
No instante (1), a figura 2 mostra que o campo H 1 é máximo e que os campos H 2 e H 3 são negativos e de mesmo valor, iguais a metade de H 1. Os três campos representados na figura 3 (parte superior), levando em conta que o campo negativo é representado por uma seta de sentido oposto ao que seria normal; o campo resultante (soma gráfica) é mostrado na parte inferior da figura 3 posicão (1), tendo a mesma direção do enrolamento da fase 1. Repetindo a construção para os pontos 2, 3, 4, 5 e 6 da figura 1, observa-se que o campos resultante H tem intensidade “constante”, porém sua direção vai “girando”, completando uma volta no fim de um ciclo. Figura 1
Figura 2 Figura 3
Velocidade Síncrona - A velocidade síncrona do motor(rpm) é definida pela velocidade de rotação do campo girante, a qual depende do número de pares de pólos (p) do motor e da freqüência (f) da rede. Os enrolamentos do estator podem ser construídos com um ou mais pares de pólos, que se distribuem alternadamente (um “norte” e um “sul”) ao longo da periferia do núcleo magnético. O campo girante percorre um par de pólos (p) a cada ciclo. Assim, como o enrolamento tem pólos ou pares de pólos, a velocidade do campo será: O motor síncrono possui o rotor com número de pólos correspondente ao número de pólos do enrolamento do estator. Durante a operação normal em regime, não há nenhum movimento relativo entre os pólos do rotor e o fluxo magnético do estator, ou seja, estão em perfeito sincronismo e com isto não há indução de tensão elétrica no rotor pelo fluxo mútuo e, desta forma, não há excitação proveniente da alimentação de corrente alternada (ca). As bobinas dos pólos podem ser feitas com muitas espiras de fio de cobre isolado ou barras de cobre, dependendo do tipo de rotor utilizado (polos lisos ou polos salientes). A alimentação do campo (excitação) é feita em Corrente Contínua que, ao circular pelos enrolamentos de campo, os pólos são magneticamente polarizados, tornando-se alternadamente pólos norte e sul. A excitação em corrente contínua pode ser aplicada no campo através dos porta-escovas e anéis coletores ou por um sistema de excitação sem escova e com controle eletrônico (brushless). p
A aplicação dos Motores Síncronos na indústria, na maioria das vezes, resultam em vantagens econômicas e operacionais consideráveis ao usuário devido a suas características de
Características Especiais de Partida Grandes moinhos de bolas para minério de ferro e moagem de cimento e compressores são alguns exemplos de aplicações onde é requerido alto conjugado de partida (150 a 200 % do conjugado nominal). Devido às limitações do sistema de alimentação, normalmente se desejam baixas correntes de partida (rotor bloqueado). A combinação de alto conjugado com baixa corrente de partida pode ser melhor atendida pelo motor síncrono sem afetar as características de funcionamento em regime. A redução da corrente de partida, normalmente pode ser alcançada por um projeto especial dos enrolamentos do estator e amortecedor. A opção de partida com redução de tensão, também é uma alternativa utilizada para reduzir a corrente, porém com redução do conjugado.
Velocidade Constante Independentemente das variações de carga e desde que a carga se mantenha dentro da limitação do conjugado máximo (pull-out) do motor, a rotação média do motor síncro se mantém constante. Isto se verifica pelo fato dos pólos do rotor permanecerem travados em relação ao campo magnético girante produzido pelo enrolamento do estator. Desta forma o motor síncrono mantém a velocidade constante tanto nas situações de sobrecarga como também durante momentos de queda de tensão, respeitando-se os limites do conjugado máximo (pull-out). Em certas aplicações , como em máquinas de moinho de polpa de papel, a velocidade constante resulta na uniformidade superior e qualidade do produto produzido. Conjugados O projeto do motor síncrono sempre deve ser feito levando-se em consideração as características da carga a ser acionada e com isto os conjugados e inércia têm uma importância muito grande na especificação do motor. a) Conjugado de partida É o conjugado que o motor deve desenvolver para vencer o conjugado resistente da carga parada ou seja, é o conjugado de partida da carga. b) Conjugado de Sincronização É o conjugado que o motor deve desenvolver para atingir a velocidade adequada onde a aplicação do campo de excitação levará o motor ao sincronismo ( pull-in torque). c) Conjugado Máximo em Sincronismo É o conjugado que o motor deve desenvolver para manter o motor em sincronismo no caso de sobrecargas momentâneas ( pull-out torque). Inercia Motores Síncronos para acionar cargas de alta inércia são construídos em carcaças maiores para atender as condições de aceleração. O tempo que o motor leva para acelerar provoca aquecimento no enrolamento amortecedor e portanto, este deve ser projetado para atender as condições de partida. A definição correta da inércia da carga, juntamente com
as análises dos conjugados do motor e da carga são imprescindíveis para que o motor atenda as condições de partida e aceleração. Partida O enrolamento amortecedor, que funciona como a gaiola do motor de indução, é o responsável pela partida e aceleração do motor síncrono. Desta forma, os conjugados de partida e sincronização variam com o quadrado da tensão aplicada e a corrente de partida é proporcional a tensão aplicada, como no motor de indução.
Manutenção Reduzida Por não necessitar de contatos elétricos deslizantes para seu funcionamento, os motores síncronos BRUSHLESS não possuem escovas e anéis coletores e com isso eliminam a necessidade de manutenção, inspeção e limpeza nestes componentes. Curva característica de partida de um motor síncrono a plena tensão Se o conjugado do motor especificado, com 95% da rotação síncrona for igual ao conjugado máximo da carga, o mesmo não conseguirá desenvolver este conjugado a 98% da rotação síncrona e o motor não sincroniza. Desta forma, para que a partida e sincronismo do motor síncrono sejam garantidos, a análise da curva de conjugado de partida deve ser sempre acompanhada pela análise da curva de conjugado resistente da carga. Partida assíncrona O principal método utilizado para partida dos motores síncronos é a partida assíncrona através da gaiola de esquilo com o enrolamento do rotor curto-circuitado ou conectado a uma resistência usualmente chamada resistência de partida ou resistência de descarga. Através da partida assíncrona, o rotor acelera a uma velocidade muito próxima da velocidade síncrona, com um pequeno escorregamento em relação ao campo girante. Neste momento, aplica-se uma corrente contínua no enrolamento do rotor, levando o motor ao sincronismo. Nas máquinas com escovas, utiliza-se um relé de aplicação de campo, enquanto nos motores brushless, utiliza-se um circuito eletrônico de disparo instalado junto de um disco girante. A função deste circuito eletrônico e do relé de aplicação de campo é gerenciar a seqüência de partida do motor síncrono, desde o fechamento (curto-circuito) do rotor até a aplicação da corrente no campo. O motor síncrono parte como um motor de indução, acelera a carga até o ponto onde o conjugado do motor iguala o conjugado resistente da carga. Usualmente este ponto ocorre com 95% da rotação síncrona ou acima e nesta situação a tensão de excitação é aplicada no motor e o rotor sincroniza, ou seja, irá acelerar a inércia combinada do rotor do motor mais a da carga até rotação síncrona precisa. As características das cargas a serem acionadas determinam as condições de aceleração e sincronismo. Em cargas com alto de conjugado resistente, o enrolamento amortecedor deve levar o conjunto carga e motor a acelerar em um tempo maior do que para um conjugado resistente
velocidade através de Inversores de Freqüência.
2. Excitatriz brushless (sem escovas) Motores Síncronos com sistema de excitação brushless possuem uma excitatriz girante, normalmente localizada em um compartimento na parte traseira do motor. A excitatriz funciona como um gerador de corrente alternada onde o rotor que fica localizado no eixo do motor, possui um enrolamento trifásico e o estator é formado por pólos alternados norte e sul alimentados por uma fonte de corrente contínua externa. O enrolamento trifásico do rotor é conectado a uma ponte de diodos retificadores. A tensão gerada no rotor é retificada e utilizada para a alimentação do enrolamento de campo do motor. A amplitude desta corrente de campo pode ser controlada através do retificador que alimenta o campo do estator da excitatriz. Os motores síncronos com excitação brushless possuem um custo de manutenção reduzido devido ao fato de não possuirem escovas. Por não possuirem contatos elétricos deslizantes, eliminando a possibilidade de faiscamento, os motores síncronos com excitação do tipo brushless são recomendados para aplicações em áreas especiais com atmosfera explosiva.
Corrente de Partida Durante a partida dos motores síncronos brushless, o enrolamento de campo é curtocircuitado através do circuito de disparo. Enquanto o motor permanecer parado, a freqüência da corrente de campo é inicialmente igual a freqüência da rede (60Hz para rede de 60Hz) e diminui a medida em que a rotação do motor aumenta. Quando a excitação é ligada, a rotação do motor deve estar próximo da rotação de sincronismo (em torno de 95% da rotação síncrona) e a freqüência da corrente de campo estará em torno de 3Hz. A corrente do estator também oscila durante o processo de partida, estabilizando após o sincronismo do motor. 1) Instante da partida Is Ie **2) A freqüência do rotor diminui com o aumento da rotação
Is Ie Is Ie Comportamento da corrente do estator (Is) e do rotor (Ie) na partida assíncrona
Carcaça - Sua função principal é apoiar e proteger o motor, alojando também o pacote de chapas e enrolamento do estator. Podem ser construídas nos tipos horizontais e verticais e com grau de proteção de acordo com as necessidades do ambiente. A carcaça é construída em chapas e perfis de aço soldadas, com as junções feitas através de solda tipo MIG , formando um conjunto sólido e robusto que é a base estrutural da máquina. Todo o conjunto da carcaça recebe um tratamento de normalização para alívio de tensões provocadas pela solda. Tal construção proporciona excelente rigidez estrutural de maneira a suportar esforços mecânicos proveniente de eventual curto-circuito e baixas vibrações, capacitando o motor a atender as mais severas solicitações. Internamente a carcaça é constituída por longarinas dispostas na periferia para fixação do pacote de chapas com seu respectivo enrolamento. Normalmente a carcaça é apoiada sobre uma base metálica rígida (chapa de aço), e esta por sua vez apoiada sobre a base de concreto. A fixação da base metálica ao concreto é feita através de chumbadores. Estator bobinado - É constituido de partes m a g n é t i c a s estacionárias, incluindo o pacote laminado de chapas de aço silício e o enrolamento do estator, que opera com alimentação de potência em corrente alternada para gerar o campo magnético girante. Sua função é fornecer corrente magnetizante para o bobinado de campo do motor. A excitatriz brushles (sem escovas) é composta pelo rotor, estator, diodos retificadores e circuito de disparo. A excitatriz estática é composta de anéis coletores e escovas e depende de uma fonte externa para alimentação do campo do motor. EXCITATRIZ Motor com escovas Excitatriz brushless Pacote de chapas - É formado por lâminas de aço silício com baixas perdas, prensadas, e o conjunto fixo através de viga metálica ou sistema de longarinas. O rotor pode ser construído com pólos lisos ou salientes dependendo das características construtivas do motor e da aplicação. Consiste nas partes ativas giratórias compostas da coroa do rotor, o enrolamento de campo e o enrolamento amortecedor. Os pólos de campo são magnetizados através da corrente direta
axiais e radiais a que são submetidos. Em algumas aplicações podem ser utilizados rolamentos especiais. Mancais de deslizamento com lubrificação Natural - Quando o rotor gira, o óleo lubrificante é recolhido pelo anel pescador interno e t r a n s f e r i d o diretamente à superfície do eixo criando uma camada de óleo entre o eixo a superfície dos casquilhos do mancal. O aquecimento de fricção é dissipado somente por radiação ou convecção, entretanto, a temperatura ambiente deve ser informada quando da especificação do motor, para que seja garantida a refrigeração natural. Lubrificação Forçada - O óleo lubrificante circula no mancal através um sistema de alimentação externa de óleo e, se necessário é resfriado em uma unidade hidráulica separada. Este sistema torna-se necessário quando a lubrificação natural do mancal, proveniente do anel pescador interno de lubrificação, é insuficiente devido a rotação específica requerida ou altas perdas por atrito. MANCAIS Rotor de pólos lisos
Os motores síncronos WEG são fornecidos com os acessórios padrões necessários para seu correto funcionamento e monitoramento nos principais componentes. Quando da especificação do motor, é importante informar os demais acessórios que o usuário deseja para que sejam inclusos no projeto e fabricação do motor. Acessórios (fornecimento padrão)
Termômetro PT - 100 no mancal
Os motores síncronos WEG podem ser fabricados nas formas construtivas B3, D5 ou D6 e com mancais de rolamentos lubrificados a graxa ou mancais de deslizamento lubrificados a óleo. Os mancais de deslizamento podem ser montados em pedestais ou junto às tampas, tornando-se parte integrante do motor. Motores de baixa polaridade e alta rotação normalmente possuem comprimento do pacote do rotor relativamente longo em comparação com o seu diâmetro Motores de alta polaridade e baixa rotação, normalmente possuem comprimento do pacote do rotor relativamente pequeno em comparação com o seu diâmetro. SISTEMAS DE REFRIGERAÇÃO Os tipos de refrigeração mais utilizados são:
Os motores síncronos WEG são
prolongamento da vida útil do motor. As bobinas são alojadas nas ranhuras do estator, isoladas do núcleo de chapas do estator através de material isolante classe “F” (155°C) e fixadas por cunha de fechamento de fibra de vidro ou magnética. Os fios de cobre que formam as bobinas são isolados com esmalte apropriado para classe “H” (180°C). Impregnação - Após a inserção das bobinas, fechamento das ranhuras, conexões e amarrações das cabeças das bobinas, o estator bobinado é impregnado a vácuo e pressão utilizando-se resina epóxi classe H isenta de solventes, que garante ao sistema de isolamento WEG excelentes propriedades elétricas, mecânicas e resistência a intempéries. As resinas epóxi são ideais para impregnações porque após a cura apresentam excelente resistência a intempéries que são encontradas nos ambientes onde máquinas elétricas girantes são utilizadas. Por se tratarem de resinas 100% sólidas, isto é, não possuem solvente em sua composição, garantem maior homogeneidade e evitam a presença de bolhas de ar no isolamento após a polimerização e cura final.
Os motores síncronos devem ser especificados segundo sua aplicação, isto é, através de seu regime de trabalho, curva de conjugado resistente e inércia. Estas duas últimas são definições importantes para a anállise da partida do motor, enquanto que o regime de trabalho é importante para o dimensionamento térmico em regime. O fator de potência e o tipo de excitação também são características importantes na especificação do motor. O tipo de ambiente define o grau de proteção do motor. Conjugado resistente e inércia da carga Na especificação de um motor síncrono, é importante se conhecer a carga acionada. A curva de conjugado resistente e a inércia da carga influenciam diretamente nas características de partida do motor. Motores Síncronos para acionar cargas de alta inércia são construídos em carcaças maiores para atender as condições de aceleração. Como o motor síncrono parte através de sua gaiola (como um motor de indução) e com o enrolamento do rotor curto-circuitado (ou fechado numa resistência), a escolha correta do material utilizado na barra amortecedora (geralmente constituído de cobre ou ligas de cobre) e a sua geometria são primordiais para a definição da curva característica de partida do motor. Esta curva deve ser sempre definida a partir da curva de conjugado resistente da carga. As barras amortecedoras, além de garantir em partida através do conjugado gerado na gaiola, também devem ser dimensionadas de maneira que possam dissipar o calor gerado durante o processo de partida.
Neste aspecto, a inércia da carga terá uma grande influência sobre o tempo de partida e o calor a ser dissipado pelas barras. Em princípio, não se pode afirmar que um motor síncrono utilizado em uma determinada aplicação (ex. bomba), possa ser utilizado para o acionamento de uma outra aplicação diferente da primeira (ex. exaustor). Regime de trabalho A especificação correta da potência nominal do motor síncrono deve considerar o ciclo de trabalho do motor com a freqüência de sobrecargas que existem no regime. Fator de potência Quando se deseja realizar a correção do fator de potência utilizando o motor síncrono, o fator de potência desejado deve ser especificado previamente. Isto significa que um motor projetado para operar com fator de potência unitário, não poderá desenvolver a mesma potência nominal ativa sob um fator de potência inferior. Características do ambiente O ambiente onde o motor será instalado deve ser analisado antes de se especificar o motor. O tipo de ambiente define o grau de proteção e o tipo de refrigeração do motor. Motores para aplicação em ambientes com atmosfera explosiva exigem excitação do tipo brushless. A temperatura ambiente e altitude consideradas para especificação do motor são de 40ºC e 1000m acima do nível do mar. Se o ambiente de trabalho do motor possuir valores acima destas premissas, é importante que estes dados sejam considerados na especificação.
Velocidade fixa As aplicações de motores síncronos com velocidade fixa se justificam pelos baixos custos operacionais, uma vez que apresentam alto rendimento e podem ser utilizados como compensadores síncronos para correção do fator de potência. Os motores recomendados para esta aplicação são com excitação sem escovas (brushless). Em muitos casos um motor com valores de conjugados inferiores ao padrão podem ser utilizados. Isto traz redução vantajosa da corrente de partida do motor o que implica em menor distúrbio no sistema elétrico durante o ciclo de partida e em redução nas tensões mecânicas resultantes nos enrolamentos do motor. Para um correto dimensionamento e aplicação dos motores síncronos a WEG recomenda aos seus clientes, ao se especificar um motor síncrono, que se forneçam todas as informações necessárias sobre a aplicação.
Os motores síncronos WEG são fabricados especificamente para atender as necessidades de cada aplicação. Devido a suas caracteristicas construtivas, operação com alto rendimento e adaptabilidade a todos os tipos de ambiente, são utilizados em praticamente todos os
Acessórios – [ ] Resistência de Aquecimento Tensão (V) ____________ [ ] Sensores de temperatura nos enrolamentos [PT100 a 3 fios - 1 por fase] [ ] Sensores de temperatura nos mancais [PT100 a 3 fios - 1 por mancal] Observações: **_____________________________________________________________________________________
_____________**
Av. Pref. Waldemar Grubba,3000 - 89256-9000 - Jaraguá do Sul - SC Tel.: (47) 372-4000 - Fax: (47) 372- São Paulo - SP - Tel.: (11) 5053-2300 - Fax: (11) 5052- wm-mkt@weg.com.br www.weg.com.br