




























































































Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Livro completo
Tipologia: Notas de estudo
1 / 646
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Modeling
AnIntroductionto
StochasticModeling
AcademicPress SanDiego London Boston New York Sydney Tokyo^ Toronto
Thisbookisprintedonacid-freepaper.
Copyright©1998,1994,1984byAcademicPress
Allrightsreserved. Nopartofthispublicationmaybereproducedor transmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopy,recording,or anyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher. PermissionsmaybesoughtdirectlyfromElsevier'sScienceandTechnologyRightsDepartmentin Oxford,UK.Phone:(44)1865843830,Fax:(44)1865853333,c-mail:permissions@elsevier.co.uk. Youmayalsocompleteyourrequeston-lineviatheElsevierhomepage:httpJ/www.elseviercomby selecting'CustomerSupport'andthen'ObtainingPermissions'.
ACADEMICPRESS AnImprintofElsevier 525BSt.,Suite1900,SanDiego,California92101-4495,USA 1300BoylstonStreet,ChestnutHill,MA02167,USA http://www.apnet.com
AcademicPressLimited 24-28OvalRoad,LondonNW17DX,UK http://www.hbuk.co.uk/ap/
LibraryofCongressCataloging-in-PublicationData
Taylor,HowardM. Anintroductiontostochasticmodeling/HowardM.Taylor,Samuel Karlin.-3rded. p. cm.
ISBN-13:978-0-12-684887-8 ISBN-10:0-12-684887- 1.Stochasticprocesses. I.Karlin,Samuel. II.Title. QA274.T35 1998 003'.76--dc2l
ISBN-13: 978-0-12-684887- ISBN-10:0-12-684887-
PRINTEDINTHEUNITEDSTATESOFAMERICA
PrefacetotheFirstEdition
Stochasticprocessesarewaysofquantifyingthedynamicrelationshipsof sequencesofrandomevents.Stochasticmodelsplayanimportantrolein elucidatingmanyareasofthenaturalandengineeringsciences.Theycan beusedtoanalyzethevariabilityinherentinbiologicalandmedical processes,todealwithuncertaintiesaffectingmanagerialdecisionsand withthecomplexitiesofpsychologicalandsocialinteractions,andtopro- videnewperspectives,methodology,models,andintuitiontoaidinother mathematicalandstatisticalstudies. Thisbookisintendedasabeginningtextinstochasticprocessesforstu- dentsfamiliarwithelementaryprobabilitycalculus.Itsaimistobridge thegapbetweenbasicprobabilityknow-howandanintermediate-level courseinstochasticprocesses-forexample,AFirstCourseinStochastic Processes,bythepresentauthors. Theobjectivesofthisbookarethree:(1)tointroducestudentstothe standardconceptsandmethodsofstochasticmodeling;(2)toillustratethe richdiversityofapplicationsofstochasticprocessesinthesciences;and (3)toprovideexercisesintheapplicationofsimplestochasticanalysisto appropriateproblems. Thechaptersareorganizedaroundseveralprototypeclassesofsto- chasticprocessesfeaturingMarkovchainsindiscreteandcontinuous time,Poissonprocessesandrenewaltheory,theevolutionofbranching events,andqueueingmodels.AftertheconcludingChapterIX,wepro- videalistofbooksthatincorporatemoreadvanceddiscussionsofseveral ofthemodelssetforthinthistext.
instructors,hopethatstudentswouldposeandanswerforthemselvesas theyreadatext.Answerstotheexercisesaregivenattheendofthebook sothatstudentsmaygaugetheirunderstandingastheygoalong. Problemsaremoredifficult.Someinvolveextensivealgebraicorcal- culusmanipulation.Manyare"wordproblems"whereinthestudentis asked,ineffect,tomodelsomedescribedscenario.Asinformulatinga model,thefirststepinthesolutionofawordproblemisoftenasentence oftheform"Letx=...."Amanualcontainingthesolutionstotheprob- lemsisavailablefromthepublisher. Areasonablestrategyonthepartoftheteachermightbetoholdstu- dentsresponsibleforalloftheexercises,buttorequiresubmittedsolu- tionsonlytoselectedproblems.Everystudentshouldattemptarepresen- tativeselectionoftheproblemsinordertodevelophisorherabilityto carryoutstochasticmodelinginhisorherareaofinterest. Asmallnumberofproblemsarelabeled"ComputerChallenges."These callformorethanpencilandpaperfortheiranalyses,andeithersimula- tion,numericalexploration,orsymbolmanipulationmayprovehelpful. ComputerChallengesaremeanttobeopen-ended,intendedtoexplore whatconstitutesananswerintoday'sworldofcomputingpower.They mightbeappropriateaspartofanhonorsrequirement. Becauseourfocusisonstochasticmodeling,insomeinstanceswehave omittedaproofandcontentedourselveswithaprecisestatementofa resultandexamplesofitsapplication.Allsuchomittedproofsmaybe foundinAFirstCourseinStochasticProcesses,bythepresentauthors. Inthismoreadvancedtext,theambitiousstudentwillalsofindadditional materialonmartingales,Brownianmotion,andrenewalprocesses,and presentationsofseveralotherclassesofstochasticprocesses.
TotheInstructor
Ifpossible,werecommendhavingstudentsskimthefirsttwochapters,re- ferringasnecessarytotheprobabilityreviewmaterial,andstartingthe coursewithChapterIII,onMarkovchains.Aonequartercourseadapted tothejunior-seniorlevelcouldconsistofacursory(one-week)reviewof ChaptersIandII,followedinorderbyChaptersIIIthroughVI.Forinter- estedstudents,ChaptersVII,VIII,andIXdiscussothercurrentlyactive areasofstochasticmodeling.Starredsectionscontainmaterialofamore advancedorspecializednature.
Acknowledgments
Manypeoplehelpedtobringthistextintobeing.Wegratefullyacknowl- edgethehelpofAnnaKarlin,ShelleyStevens,KarenLarsen,and LaurieannShoemaker.ChapterIXwasenrichedbyaseriesoflectureson queueingnetworksgivenbyRalphDisneyatTheJohnsHopkinsUniver- sityin1982.AlanKarr,IvanJohnstone,LukeTierney,BobVanderbei, andothersbesidesourselveshavetaughtfromthetext,andwehaveprof- itedfromtheircriticisms.Finally,wearegratefulforimprovementssug- gestedbytheseveralgenerationsofstudentswhohaveusedthebookover thepastfewyearsandhavegivenustheirreactionsandsuggestions.
ChapterI
Aquantitativedescriptionofanaturalphenomenoniscalledamathe- maticalmodelofthatphenomenon.Examplesabound,fromthesimple equationS=Zgt2describingthedistanceStraveledintimetbyafalling objectstartingatresttoacomplexcomputerprogramthatsimulatesa biologicalpopulationoralargeindustrialsystem. Inthefinalanalysis,amodelisjudgedusingasingle,quitepragmatic, factor,themodel'susefulness.Somemodelsareusefulasdetailedquanti- tativeprescriptionsofbehavior,asforexample,aninventorymodelthat isusedtodeterminetheoptimalnumberofunitstostock.Anothermodel inadifferentcontextmayprovideonlygeneralqualitativeinformation abouttherelationshipsamongandrelativeimportanceofseveralfactors influencinganevent.Suchamodelisusefulinanequallyimportantbut quitedifferentway.Examplesofdiversetypesofstochasticmodelsare spreadthroughoutthisbook. Suchoftenmentionedattributesasrealism,elegance,validity,and reproducibilityareimportantinevaluatingamodelonlyinsofarasthey bearonthatmodel'sultimateusefulness.Forinstance,itisbothunrealis- ticandquiteineleganttoviewthesprawlingcityofLosAngelesasageo- metricalpoint,amathematicalobjectofnosizeordimension.Yetitis quiteusefultodoexactlythatwhenusingsphericalgeometrytoderivea minimum-distancegreatcircleairroutefromNewYorkCity,another "point."
2 I Introduction
Thereisnosuchthingasthebestmodelforagivenphenomenon.The pragmaticcriterionofusefulnessoftenallowstheexistenceoftwoor moremodelsforthesameevent,butservingdistinctpurposes.Consider light.Thewaveformmodel,inwhichlightisviewedasacontinuousflow, isentirelyadequatefordesigningeyeglassandtelescopelenses.Incon- trast,forunderstandingtheimpactoflightontheretinaoftheeye,the photonmodel,whichviewslightastinydiscretebundlesofenergy,is preferred.Neithermodelsupersedestheother;botharerelevantand useful. Theword"stochastic"derivesfromtheGreed toaim,to guess)andmeans"random"or"chance."Theantonymis"sure,""deter- ministic,"or"certain."Adeterministicmodelpredictsasingleoutcome fromagivensetofcircumstances.Astochasticmodelpredictsasetof possibleoutcomesweightedbytheirlikelihoods,orprobabilities.Acoin flippedintotheairwillsurelyreturntoearthsomewhere.Whetheritlands headsortailsisrandom.Fora"fair"coinweconsiderthesealternatives equallylikelyandassigntoeachtheprobability12. However,phenomenaarenotinandofthemselvesinherentlystochas- ticordeterministic.Rather,tomodelaphenomenonasstochasticorde- terministicisthechoiceoftheobserver.Thechoicedependsontheob- server'spurpose;thecriterionforjudgingthechoiceisusefulness.Most oftentheproperchoiceisquiteclear,butcontroversialsituationsdoarise. Ifthecoinoncefallenisquicklycoveredbyabooksothattheoutcome "heads"or"tails"remainsunknown,twoparticipantsmaystillusefully employprobabilityconceptstoevaluatewhatisafairbetbetweenthem; thatis,theymayusefullyviewthecoinasrandom,eventhoughmostpeo- plewouldconsidertheoutcomenowtobefixedordeterministic.Asaless mundaneexampleoftheconversesituation,changesinthelevelofalarge populationareoftenusefullymodeleddeterministically,inspiteofthe generalagreementamongobserversthatmanychanceeventscontribute totheirfluctuations. Scientificmodelinghasthreecomponents:(i)anaturalphenomenon understudy,(ii)alogicalsystemfordeducingimplicationsaboutthephe- nomenon,and(iii)aconnectionlinkingtheelementsofthenaturalsystem understudytothelogicalsystemusedtomodelit.Ifwethinkofthese threecomponentsintermsofthegreat-circleairrouteproblem,thenat- uralsystemistheearthwithairportsatLosAngelesandNewYork;the logicalsystemisthemathematicalsubjectofsphericalgeometry;andthe
4 I Introduction
Thenextprinciple,thelongrunrelativefrequencyinterpretationof probability,isabasicbuildingblockinmodernstochasticmodeling,made preciseandjustifiedwithintheaxiomaticstructurebythelawoflarge numbers.Thislawassertsthattherelativefractionoftimesinwhichan eventoccursinasequenceofindependentsimilarexperimentsap- proaches,inthelimit,theprobabilityoftheoccurrenceoftheeventonany singletrial. Theprincipleisnotrelevantinallsituations,however.Whenthesur- geontellsapatientthathehasan80-20chanceofsurvival,thesurgeon means,mostlikely,that80percentofsimilarpatientsfacingsimilar surgerywillsurviveit.Thepatientathandisnotconcernedwiththelong run,butinvividcontrast,isvitallyconcernedonlyintheoutcomeofhis, thenext,trial. Returningtothegroupexperiment,wewillsupposenextthatthecoinis flippedintotheairand,uponlanding,isquicklycoveredsothatnoonecan seetheoutcome.WhatisPr{H}now?Severalinthegrouparguethatthe outcomeofthecoinisnolongerrandom,thatPr{H}iseither0or1,and thatalthoughwedon'tknowwhichitis,probabilitytheorydoesnotapply. Othersarticulateadifferentview,thatthedistinctionbetween"ran- dom"and"lackofknowledge"isfuzzy,atbest,andthatapersonwitha sufficientlylargecomputerandsufficientinformationaboutsuchfactors astheenergy,velocity,anddirectionusedintossingthecoincouldhave predictedtheoutcome,headsortails,withcertaintybeforethetoss. Therefore,evenbeforethecoinwasflipped,theproblemwasalackof knowledgeandnotsomeinherentrandomnessintheexperiment. Inarelatedapproach,severalpeopleinthegrouparewillingtobetwith eachother,atevenodds,ontheoutcomeofthetoss.Thatis,theyarewill- ingtousethecalculusofprobabilitytodeterminewhatisafairbet,with- outconsideringwhethertheeventunderstudyisrandomornot.Theuse- fulnesscriterionforjudgingamodelhasappeared. Whiletherestofthemobweredebating"random"versus"lackof knowledge,"onemember,Karen,lookedatthecoin.Herprobabilityfor headsisnowdifferentfromthatofeveryoneelse.Keepingthecoincov- ered,sheannouncestheoutcome"Tails,"whereuponeveryonementally assignsthevaluePr{H}=0.Butthenhercompanion,Mary,speaksup andsaysthatKarenhasahistoryofprevarication. Thelastscenarioexplainswhytherearehorseraces;differentpeople assigndifferentprobabilitiestothesameevent.Forthisreason,probabil-
itiesusedinoddsmakingareoftencalledsubjectiveprobabilities.Then, oddsmakingformsthethirdprincipleforassigningprobabilityvaluesin modelsandforinterpretingthemintherealworld. Themodernapproachtostochasticmodelingistodivorcethedefinition ofprobabilityfromanyparticulartypeofapplication.Probabilitytheory isanaxiomaticstructure(seeSection2.8),apartofpuremathematics.Its useinmodelingstochasticphenomenaispartofthebroaderrealmofsci- enceandparallelstheuseofotherbranchesofmathematicsinmodeling deterministicphenomena. Tobeuseful,astochasticmodelmustreflectallthoseaspectsofthe phenomenonunderstudythatarerelevanttothequestionathand.Inad- dition,themodelmustbeamenabletocalculationandmustallowthede- ductionofimportantpredictionsorimplicationsaboutthephenomenon.
1.1. StochasticProcesses
AstochasticprocessisafamilyofrandomvariablesXwheretisapara- meterrunningoverasuitableindexsetT.(Whereconvenient,wewill writeX(t)insteadofX,.)Inacommonsituation,theindextcorresponds todiscreteunitsoftime,andtheindexsetisT={0,1,2,...}.Inthis case,X,mightrepresenttheoutcomesatsuccessivetossesofacoin,re- peatedresponsesofasubjectinalearningexperiment,orsuccessiveob- servationsofsomecharacteristicsofacertainpopulation.Stochastic processesforwhichT=[0,c)areparticularlyimportantinapplications. Heretoftenrepresentstime,butdifferentsituationsalsofrequentlyarise. Forexample,tmayrepresentdistancefromanarbitraryorigin,andX,may countthenumberofdefectsintheinterval(0,t]alongathread,orthe numberofcarsintheinterval(0,t]alongahighway. Stochasticprocessesaredistinguishedbytheirstatespace,ortherange ofpossiblevaluesfortherandomvariablesXbytheirindexsetT,andby thedependencerelationsamongtherandomvariablesX,.Themostwidely usedclassesofstochasticprocessesaresystematicallyandthoroughly presentedforstudyinthefollowingchapters,alongwiththemathemati- caltechniquesforcalculationandanalysisthataremostusefulwiththese processes.Theuseoftheseprocessesasmodelsistaughtbyexample. Sampleapplicationsfrommanyanddiverseareasofinterestareaninte- gralpartoftheexposition.