


Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Dimensionamento de laje - estrutural
Tipologia: Esquemas
1 / 4
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Vãos Efetivos e Vinculação nas Bordas Para cálculo dos vãos efetivos foi necessário conhecer a altura das lajes, o vão livre nas duas direções e a largura das vigas de apoio. Para resolver o problema será adotada uma altura comum a todas as lajes, de 10 cm. Considerando que a largura das vigas de apoio é de 20 cm, os vãos efetivos nas duas direções das lajes serão os vãos livres acrescidos dos valores: Eq: 1 Os vãos efetivos de todas as lajes estão mostrados na Tabela 1, bem como a relação (y / x) entre os lados e o tipo de laje. Tabela 1 - Vãos efetivos das lajes. Laje (^) lx (cm) ly (cm) λ Tipo Observação L1 (^526 526) 1,00 3 Armadura em duas direções L2 426 866 2,00 2B Armadura em duas direções L3 (^326 526) 1,65 3 Armadura em duas direções Laje1: Laje 2: Laje 3: n=2 n=1 n= Pré-Dimensionamento da Altura das Lajes A estimativa da altura das lajes pode ser feita com as Equações a seguir:
Eq: 3 ℎ = 𝑑 + ∅𝑙 2
Onde: d – altura útil: n – numero de bordas engastadas na laje; l* - dimensão da laje em metro; h – altura da viga; c – o cobrimento minimo; ∅l – diametro da barra de aço longitudinal. Tabela 2 - Pré-dimensionamento da altura das lajes. Laje (^) lx (cm) ly (cm) λ 0,7ly l (m) n d (cm) h (cm)* L1 526 526 1,00 368,2 3,68 2 8,46 11 L2 426 866 2,00 606,2 4,26 1 10,22 13 L3 326 526 1,65 368,2 3,26 2 7,5 10 Foi adotado um cobrimento de 20 mm, CAA-I e diâmetro da armadura longitudinal 10mm. Cálculo das Ações Atuantes Para o carregamento total nas lajes foram consideradas todas as ações seguintes: peso próprio, revestimento do lado inferior da laje, contrapiso e ações variáveis. Tabela 3 - Ações nas lajes (kN/m² ) Laje h (cm) gpp (kN/m²) Reves. Inf. Da Laje (KN/m²) Reves. do Piso (KN/m²) Permanente Total (KN/m²)
variável (KN/m²) Total (KN/m²) L1 11 2,75 0,38 1,9 5,03 2 7, L2 13 3,25 0,38 1,9 5, 53 2 7, L3 10 2,50 0,38 1,9 4,78 2 6, Foi considerado 25 KN/m³ para peso especifico do concreto, 19 KN/m³ para peso especifico da argamassa do revestimento inferior, 21 KN/m³ para o peso especifico da argamassa do contra piso e 0,85 KN/m² para piso cerâmico. Reações de Apoio nas Vigas de Borda As reações de apoio nas vigas de borda das lajes armadas em duas direções estão mostradas na Tabela abaixo, e são relativas a faixas de largura
Momentos Fletores das Lajes Os momentos fletores solicitantes nas lajes armadas em duas direções encontram-se mostrados na Tabela 5 , e foram calculados conforme a Eq. 6. Tabela 5 - Momentos fletores solicitantes (característicos) nas lajes armadas em duas direções (kN.m/m) Laje Tipo lx (m) λ P ux ux' uy uy' Mx Mx' My My' L1 3 5,26 1,00 7,03 2,69 6,99 2,69 6,99 5,23 13,60 5,23 13, L2 2B 4,26 2,00 7,53 5,94 12,13 1,48 - 8,12 16,58 2,02 - L3 3 3,26 1,65 6,78 5,1 10,99 1,99 8,14 3,67 7,92 1,43 5,
𝑃∗(𝑙𝑥)² 100 Eq: 6 Onde: M = momento fletor (kN.m/m); = coeficiente tabelado, de acordo com cada tipo de laje e em função de = y / x, sendo: x e y = coeficientes para cálculo dos momentos fletores positivos atuantes nas direções paralelas a x e y, respectivamente; ’x e ’y = coeficientes para cálculo dos momentos fletores negativos atuantes nas bordas perpendiculares às direções x e y, respectivamente; p = valor da carga uniforme ou triangular atuante na laje (kN/m² ); x = menor vão da laje (m). Figure 2 - Momentos fletores característicos (Mk - kN.cm/m).