
Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
A solution to a physics problem involving the determination of static and kinetic friction forces on a block placed on an incline surface. How to calculate the maximum static friction force using newton's laws and the given weight and incline angle. The document then proceeds to solve for the static friction force in three different scenarios, where the applied force is downhill. The document concludes that the kinetic friction force is relevant in the third scenario, and the solution for the kinetic friction force is provided.
Tipologia: Exercícios
1 / 1
Esta página não é visível na pré-visualização
Não perca as partes importantes!
where W = 45 N is the weight of the block, and θ = 15◦^ is the incline angle. Thus, N = 43.5 N, which implies that the maximum static friction force should be fs, max = (0.50)(43.5) = 21.7 N.
(a) For P = 5.0 N downhill, Newton’s second law, applied to the x axis becomes
f − P − W sin θ = ma where m =
g
Here we are assuming f is pointing uphill, as shown in Figure 6-5, and if it turns out that it points downhill (which is a possibility), then the result for fs will be negative. If f = fs then a = 0, we obtain fs = 17 N, which is clearlyallowed since it is less than fs, max. (b) For P = 8.0 N downhill, we obtain (from the same equation) fs = 20 N, which is still allowed since it is less than fs, max. (c) But for P = 15 N downhill, we obtain (from the same equation) fs = 27 N, which is not allowed since it is larger than fs, max. Thus, we conclude that it is the kinetic friction, not the static friction, that is relevant in this case. We compute the result fk = (0.34)(43.5) = 15 N. Here, as in the other parts of this problem, the friction is directed uphill.