Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Cálculo diferencial e numérico, Manuais, Projetos, Pesquisas de Cálculo

Cálculo diferencial e numerrico

Tipologia: Manuais, Projetos, Pesquisas

2025

Compartilhado em 08/07/2025

local-science-club
local-science-club 🇧🇷

1 documento

1 / 2

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
Calculus 1 Limits Assignment
1. Find the limit.
(a) lim
x45
(b) lim
x7
x249
x7
(c) lim
x0
2 + x2
x
(d) lim
x0
sin(5x)
sin(9x)
(e) lim
x0
9(1 cos x)
x
(f) lim
x0xsin 7
x2
2. Find two functions f(x) and g(x) such that lim
x0f(x) and lim
x0g(x) do not exist but
lim
x0(f(x) + g(x)) does.
3. Suppose 7 xx2f(x)7 + x+x2for all x. Find lim
x0f(x).
4. Prove that if lim
x0f(x) = 0 and |g(x)| Mfor a fixed Mand all x6= 0, then lim
x0f(x)g(x) = 0.
Hint: Use the Squeeze theorem.
pf2

Pré-visualização parcial do texto

Baixe Cálculo diferencial e numérico e outras Manuais, Projetos, Pesquisas em PDF para Cálculo, somente na Docsity!

Calculus 1 Limits Assignment

  1. Find the limit.

(a) lim x→ 4

(b) lim x→ 7

x

2 − 49

x − 7

(c) lim x→ 0

2 + x −

x

(d) lim x→ 0

sin(5x)

sin(9x)

(e) lim x→ 0

9(1 − cos x)

x

(f) lim x→ 0

x sin

x 2

  1. Find two functions f (x) and g(x) such that lim x→ 0

f (x) and lim x→ 0

g(x) do not exist but

lim x→ 0

(f (x) + g(x)) does.

  1. Suppose 7 − x − x

2 ≤ f (x) ≤ 7 + x + x

2 for all x. Find lim x→ 0

f (x).

  1. Prove that if lim x→ 0

f (x) = 0 and |g(x)| ≤ M for a fixed M and all x 6 = 0, then lim x→ 0

f (x)g(x) = 0.

Hint: Use the Squeeze theorem.

Solutions

  1. (a) 5
  2. (b) Factor the numerator, the limit is 14.
  3. (c) Rationalize the numerator, the limit is
  1. (d) lim x→ 0

sin(5x)

sin(9x)

lim x→ 0

sin(5x)

5 x

9 x

sin(9x)

  1. (e) 0
  2. (f ) Note 0 ≤

x sin

x 2

≤ |x|(1) = |x|. Since lim x→ 0

0 = 0 and lim x→ 0

|x| = 0, by the

Squeeze Theorem we have lim x→ 0

x sin

x 2

= 0. This implies lim x→ 0

x sin

x 2

  1. One example can be obtained by taking f (x) =

x

and g(x) = −

x

. Then neither lim x→ 0

f (x)

nor lim x→ 0

g(x) exist but,

lim x→ 0

(f (x) + g(x)) = lim x→ 0

x

x

= lim x→ 0

  1. Just let x → 0 on both the left and right hand sides of the inequality and you will see the

limit is 7 in each case. By the squeeze theorem lim x→ 0

f (x) = 7 as well.

  1. Proof. Note 0 ≤ |f (x)g(x)| ≤ f (x)M for all x 6 = 0. Since lim x→ 0

0 = 0 and lim x→ 0

f (x)M = 0M = 0

by the Squeeze Theorem lim x→ 0

|f (x)g(x)| = 0. This implies lim x→ 0

f (x)g(x) = 0.