









Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Aula sobre materiais de construção
Tipologia: Manuais, Projetos, Pesquisas
1 / 15
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia
Professor Eduardo Giugliani
Concreto Armado I – PUCRS. Profs. Henrique Gutfreind e Mauren Aurich
INTRODUÇÃO
1. 1 Definição Concreto armado é a união do concreto e de um material resistente a tração, normalmente o aço, envolvido pelo concreto e nele convenientemente disposto, de tal modo que ambos resistam solidariamente aos esforços a que forem submetidos. De outra maneira, define-se o concreto armado como um material complexo, constituído pela reunião de dois materiais que se podem admitir simples, o concreto e o aço dispostos de maneira a utilizar econômica e racionalmente as resistências próprias de cada um deles. O princípio básico das peças de concreto armado é combinar o concreto e o aço de maneira tal, que em uma mesma peça os esforços de tração sejam absorvidos pelo aço e os esforços de compressão de preferência pelo concreto. O concreto armado nasceu da necessidade de criar-se um tipo de construção que, utilizando uma pedra artificial, apresentasse a durabilidade da pedra natural, tivesse a propriedade de ser fundida nas dimensões e formas desejadas e associando-se o aço a esta pedra artificial aproveitasse a alta resistência deste material, ao mesmo tempo que protegendo-o, aumentasse sua durabilidade. A associação do concreto e do aço é possível e prática, graças às seguintes características dos dois materiais: ü Elevadas resistências do concreto à compressão e do aço à tração; ü Aderência dos dois materiais assegurando sua ação conjunta; ü Coeficientes de dilatação térmica aproximadamente iguais e ü Proteção do aço a corrosão pelo concreto que o envolve. 1.2 Vantagens do Concreto Armado O concreto armado é hoje largamente empregado em todos os tipos de construção e suas principais vantagens são as seguintes: a) Flexibilidade O concreto é facilmente moldável; o concreto fresco adapta-se a qualquer tipo de forma e é sempre possível por um conveniente dimensionamento da peça e de suas armaduras absorver os diversos tipos de solicitações a que ela pode ser submetida. Podemos então, executar obras de grandes vãos e balanços audaciosos e peças com as formas mais variadas. b) Monolitismo O concreto armado é próprio para estruturas monolíticas (sem juntas) que por serem muitas vezes hiperestáticas, apresentam uma elevada reserva de capacidade resistente e segurança. Numerosas obras que sofreram na última guerra avarias graves, mas sem colapso, puderam ser restauradas. Esta qualidade especial das estruturas hiperestáticas de concreto armado de poderem resistir sem colapso a esforços diversos daqueles para os quais foram projetados, foi um dos atrativos dos construtores no início do concreto armado e nos 20 ou 30 anos que se seguiram.
1.2 Normas relacionadas NBR - 6118 Projeto e execução de obras de concreto armado; NB - 2 Cálculo e execução de pontes de concreto armado; NB - 4/80 Cálculo e execução de lajes mistas; NBR - 6120 Cargas para o cálculo de estruturas de edificações; NBR - 7480 Barras e fios destinados a armaduras de concreto armado; NB - 6 Carga móvel em pontes rodoviárias; NB - 7 Carga móvel em pontes ferroviárias; NB - 16 Execução de desenhos para obras de concreto simples e armado; NBR - 8953 Concretos para fins estruturais.
CONCRETO 2.1 Generalidades e Propriedades O concreto é um aglomerado constituído de agregados e cimento como aglutinante. É, portanto, uma rocha artificial. Os agregados, quanto às dimensões de seus elementos, são classificados em fino (areia ou pó de pedra) e graúdos (brita, cascalho, resíduos de altos fornos, argila expandida). A fabricação de concreto é feita pela mistura dos agregados com cimento e água, à qual, conforme a necessidade, são acrescidos aditivos que influenciam as características físicas e químicas do concreto fresco ou endurecido. O concreto fresco é moldado em formas e adensado com vibradores. O endurecimento do concreto começa após poucas horas e de acordo com o tipo de cimento e aditivo, atinge aos 28 dias 60 a 90% de sua resistência. O concreto pode ser fabricado no local da obra ou pré-misturado (fabricado em usina). De acordo com a maneira de ser executado, distinguem concreto fundido, socado, jateado, bombeado ou centrifugado. As propriedades do concreto que interessam ao estudo do concreto armado, são as resistências à ruptura e a deformabilidade, quer sob a ação de variações das condições ambientes, quer sob a ação de cargas externas. 2.2 Resistência à Ruptura 2.2.1 Resistência à Compressão 2.2.1.1 Resistência característica do concreto A resistência à compressão simples é a característica mecânica mais importante de um concreto. Geralmente sua determinação se efetua mediante o ensaio de corpos de prova executados segundo procedimentos operatórios normalizados estabelecidos pelas normas NBR 5738 e NBR 5739 para moldagem e cura de corpos de prova cilíndricos de concreto e ensaio à compressão de corpos de prova cilíndricos de concreto. Há, entretanto, o seguinte fato a ser considerado: os valores do ensaio que proporcionam os diversos corpos de prova são mais ou menos dispersos, variam de um corpo de prova para outro, de uma obra para outra, segundo o cuidado e rigor que se confecciona o concreto. Em outras palavras, a resistência do concreto não é uma grandeza determinística, mas está sujeita a dispersões cujas causas principais são variações aleatórias da composição, das condições de fabricação, e da cura. Além desses fatores aleatórios, existem também influências sistemáticas, como, por exemplo, influências atmosféricas (verão, inverno) mudança da origem de fornecimento das matérias-primas ou alterações na composição das turmas de trabalho. A maneira mais adequada de representação das dispersões que pode sofrer a resistência de um concreto é o diagrama de freqüência em que se registram no eixo das
para a resistência do concreto era a média aritmética, fcj dos n valores de ruptura, chamada resistência média na idade de "j" dias (normalmente "j" = 28). A média aritmética, entretanto, apresenta o inconveniente de não representar a verdadeira resistência do concreto na obra, por não levar em conta a dispersão da série de valores. No ensaio dos corpos de prova da amostra de um concreto, metade deles terá resistência inferior e metade resistência superior a fcj. Figura 2. Entre dois concretos cujas curvas de distribuição por frequência sejam as da figura acima apesar de terem a mesma resistência média, não há dúvida que o mais seguro é o concreto (1), aquele que apresenta menor dispersão, apresentando um número de pontos de menor resistência consideravelmente menos elevado que o concreto (2). Em consequência, o coeficiente de segurança a adotar no cálculo, deve ser maior para o concreto (2) de maior dispersão. A conclusão a que se chega é que, ao adotar a resistência média como base dos cálculos, ter-se-á coeficientes de segurança variáveis segundo a qualidade de execução. Para eliminar este inconveniente e conseguir que se trabalhe com um coeficiente de segurança único e homogêneo em todos os casos, se adota modernamente o conceito de " resistência característica do concreto ", que é uma medida estatística que tem em conta não só o valor da média aritmética, fcj, das rupturas dos diversos corpos de prova, como também o coeficiente de variação δ, da série de valores. Define-se como resistência característica fck do concreto, aquele valor que apresenta uma probabilidade de 95% de que se apresentem valores individuais de resistência de corpos de prova mais altos do que ele, ou seja, somente 5% de valores menores ou iguais. Admitindo-se a hipótese de distribuição estatística normal de resistências, a definição anterior conduz à adoção do valor do quantil de 5% para valor da resistência característica fck. Esta maneira é considerada mais lógica e segura para definir a resistência do concreto. Assim, entre dois concretos que tenham a mesma resistência média e coeficientes de variação diferentes (controles de execução diferentes) o de menor coeficiente de variação será o de maior segurança por ter um fck maior (ver fig. 2.2) Por outro lado, para uma mesma resistência característica, um concreto de menor coeficiente de variação (melhor execução), será dosado para uma resistência média menor, fci
com evidente redução de custo (ver fig. 2.3). Portanto a adoção do valor característico como limite de resistência representa um estímulo real a uma maior qualidade de execução. Figura 2. Das tabelas de áreas da curva de distribuição normal, adotando a forma reduzida para que a probabilidade de 5% dos resultados sejam iguais ou menores que fck resultam as seguintes relações: fck = fcj - 1,65 sn, onde sn é o desvio padrão da resistência. Uma coletânea executada a nível internacional dos resultados estatísticos do controle de qualidade do concreto e a análise destes resultados demonstraram que o desvio padrão é bastante independente da resistência do concreto e que pode ser considerado como uma medida de cuidado empregado na fabricação do concreto. De acordo com o item 8.2.4 da NBR 6118-03 as prescrições se referem à resistência à compressão obtida em ensaios de cilindros moldados segundo a NBR 5738 realizados de acordo com a NBR 5739. Quando não for indicada a idade as resistências referem-se à idade de 28 dias. A estimativa da resistência à compressão média fcmj, correspondente a uma resistência fckj especificada, deve ser feita conforme indicado na NBR 12655 onde: fcmj = fckj + 1,65 sd onde sd é o desvio padrão de dosagem que, depende entre outras variáveis, da condição de preparo do concreto. A NBR 8953/1992 classifica os concretos para fins estruturais em classes de resistência que são designadas pela letra C seguida do valor da resistência característica à compressão (fck) expressa em MPa conforme as tabelas 1 e 2. Tabela 1 - Classes de resistência do grupo I Grupo I de resistência Resistência característica à compressão (MPa) C 15 15 C 20 20 C 25 25 C 30 30 C 35 35 C 40 40 fci (MPa)
2.2.2.1 Resistência à Tração por Fendilhamento Quando uma carga linear atua sobre um corpo cilíndrico ou prismático colocado horizontalmente, surgem tensões de tração transversais, aproximadamente constantes no trecho médio da seção transversal, que, levados ao valor máximo produzem o fendilhamento da seção. O estado de tensões na peça é biaxial. O ensaio para determinação da resistência à tração por fendilhamento foi preconizado pelo engenheiro e pesquisador Fernando Luiz Lobo Carneiro e reconhecido pelo CEB - FIP e RILEM que o denominaram "ensaio brasileiro". A resistência à tração por fendilhamento é determinada de acordo com a NBR 7222 e pode ser calculada pela expressão: fct = 2/π × P/(DL) onde fct: limite de resistência à tração em MPa. P: carga máxima em N indicada pelo dinamômetro da máquina na ocasião da ruptura. D: diâmetro do corpo de prova em mm. L: comprimento do corpo de prova em mm. A resistência à tração por fendilhamento deveria ser um pouco menor que a resistência à tração axial, devido as tensões de compressão que atuam simultaneamente (caso de solicitação "biaxial "). Na realidade, observa-se o contrário, o que é explicado pelo fato de que, neste tipo de ensaio, as maiores tensões de tração não ocorrem na superfície, mas sim no interior da seção, onde a retração produz tensões de compressão que necessitam ser primeiramente eliminadas. Por esta razão a resistência à tração pura do concreto pode determinar-se pela fórmula: fct = 0,85. 2P/(π DL) = 0,55 P/(DL) uma vez que é menor, aproximadamente 15%, do que a resistência à tração por fendilhamento, como já foi visto anteriormente. 2.2.2.2 Resistência à Tração Axial Antigamente, a resistência à tração axial do concreto era raramente determinada, pelas dificuldades de transmitir, sem perturbações, a força de tração ao corpo de prova ensaiado. Com o aparecimento de colas artificiais de alta qualidade, tornou-se possível produzir tensões de tração axiais e uniformemente distribuídas em corpos de prova prismáticas, através de placas de aço coladas nestes prismas. Na falta de ensaios comparativos pode-se tornar a resistência à tração axial igual a 85% da resistência à tração por fendilhamento ou 60% da resistência à tração na flexão. Fendilhamento Tração axial Flexão
2.2.2.3 Resistência à Tração por Flexão A resistência à tração na flexão, de acordo com a NBR 12142 é determinada submetendo-se à flexão uma viga de concreto simples. A resistência à flexão é calculada mediante a fórmula: fct = Mr/W onde: Mr: momento de ruptura, W: módulo de resistência da seção de ruptura. Esta resistência depende muito das dimensões dos corpos de prova, principalmente de sua altura e do carregamento. O seu valor é maior do que a resistência à tração axial ou a obtida por compressão diametral, porque a maior tensão ocorre apenas na fibra mais externa e, por conseguinte, as fibras internas, menos solicitadas, colaboram na resistência. 2.2.2.4 Relação entre a Resistência à Compressão e a Resistência à Tração do Concreto Os valores da resistência à tração de um concreto apresentam uma dispersão muito maior que a sua resistência à compressão, principalmente no caso de tração axial. De acordo com o código Modelo do CEB - FIP/ 1978 a variação da resistência à tração pode estender-se no intervalo 0,7 a 1,3 do seu valor médio. A resistência à tração depende muito mais da forma e das dimensões do corpo de prova que a resistência à compressão. Além disso, certos fatores influem na resistência e compressão de forma diferente que na resistência à tração, como, por exemplo, o fator água- cimento, o tamanho, a forma e a resistência dos agregados e o tempo de cura (armazenagem em ambiente úmido ou seco), responsável principalmente pelas diferenças no desenvolvimento das resistências à tração e a compressão com o decorrer do tempo. Por esta razão, as fórmulas estabelecendo relações entre as resistências à tração e à compressão fornecem valores apenas aproximados. A NBR 6118-03 no item 8.2.5 chama a resistência à tração por fendilhamento de resistência à tração indireta fct,sp e a resistência à tração na flexão fct,f às quais devem ser obtidas em ensaios realizados segundo a NBR 7222 e a NBR 12142 respectivamente. A resistência à tração direta que seria a tração axial fct pode ser considerada igual a 0,9 fct,sp ou 0,7 fct,f , ou na falta de ensaios para obtenção de fct,sp e fct,f pode ser avaliado o seu valor médio ou característico por meio das equações seguintes: fct,m = 0,3 fck2/ fctk,inf = 0,7 fct,m fctk,sup = 1,3 fct,m onde: fct,m e fck são expressos em megapascal, sendo fckj > 7 MPa estas expressões podem também ser usadas para idades diferentes de 28 dias. 2.2.3 Fatores que Influem na Resistência do Concreto ü Qualidade dos materiais: cimento, água de amassamento, agregados e aditivos. ü Influência da dosagem: fator água-cimento, proporção de agregados. ü Influência da confecção: mistura, transporte, lançamento, vibração e cura. ü Influência da idade já vista anteriormente.
AÇO 3.1 Classificação Os aços estruturais para concreto armado podem ser classificados em 2 grupos: ü Aços classe A (dureza natural ou laminados a quente) que não sofrem tratamento algum após a laminação sendo as características elásticas alcançadas unicamente por composição química adequada com ligas de C, Mn, Si. Como são laminados a quente, não perdem suas propriedades de resistência quando aquecidos ao rubro e resfriados em seguida (condicionalmente até 1200º). Por isso podem ser soldados e não sofrem demasiadamente com a exposição a chamas moderadas em caso de incêndios. O diagrama tensão-deformação destes aços que apresentam escoamento definido é: ü Aços classe B (encruados a frio) obtidos por trefilação a partir do aço classe A com o aumento da resistência a tração à custa da grande perda de tenacidade. Estes aços não apresentam patamar no diagrama tensão - deformação sendo definidos por um valor convencional da tensão que corresponde a uma deformação residual de 2‰. Este valor chama-se tensão convencional de escoamento. Pelo gráfico da figura abaixo, nota-se a transformação radical que surge no diagrama tensão-deformação de um mesmo aço em consequência do encruamento: σ ε fyk ε σ 2‰ fyk
De acordo com o valor característico da tensão de escoamento os aços são classificados pela NBR 7486/1996 em categorias representadas por um número que é a tensão característica de escoamento em kN/cm², seguido das letras A ou B conforme a classe do aço. Assim teremos o aço CA - 25A que se representa simplesmente por CA - 25, cujo fyk = 25 kN/cm² (não existe CA - 25B), o aço CA - 50A que se representa por CA - 50 cujo fyk = 50 kN/cm² (não se fabrica o aço CA - 50B) e o aço CA - 60B que se representa simplesmente por CA - 60, já que não existe o aço CA - 60A. Estas armaduras são comercializadas em barras com comprimentos de 10 a 12 m e rolos dentro das seguintes bitolas: ü CA - 50 : φ 6,3 mm e φ 8,0 mm em rolo ou em barra. ü Somente em barra: φ 10,0 mm, 12,5 mm, 16,0 mm, 20,0 mm, 22 mm e 25 mm. (muito pouco utilizados φ 32,0 mm e 40,0 mm) ü aço CA - 6 0 comercializado em rolo ou barra: φ 3,4 mm, 4,2 mm, 4,6 mm, 5,0 mm, 6,0 mm, 6,3 mm, 7,0 mm e 8,0 mm. (muito pouco utilizados φ 3,8 mm e 10,0 mm) σ ε fyk 1 2‰ fyk 2 ε sr1 ε sr