









Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Este documento contiene soluciones a diferentes ejercicios relacionados con series infinitas. Se abordan temas como la convergencia de series, el teorema de Cauchy, el producto de Cauchy de series absolutamente convergentes y más. Además, se proveen la convergencia de series específicas como (n³zn), (2n/n!zn), (2n/n²zn), (n³/3n zn) y se demuestran propiedades como la convergencia implica la convergencia de raíces cúbicas. El documento también incluye demostraciones de convergencia o divergencia de series y desigualdades relacionadas.
Qué aprenderás
Tipo: Guías, Proyectos, Investigaciones
1 / 17
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Written by Men-Gen Tsai email: b89902089@ntu.edu.tw
n^2 + n − n). Solution: √ n^2 + n − n = √ n n^2 + n + n = √^1 1 /n + 1 + 1 → (^12)
as n → ∞.
2 and
sn+1 =
√ 2 + √sn (n = 1, 2 , 3 , ...),
prove that {sn} converges, and that sn < 2 for n = 1, 2 , 3 , .... Proof: First, I show that {sn} is strictly increasing. It is trivial that s 2 =
√ 2 + √s 1 =
√ 2 +
2 = s 1. Suppose sk > sk− 1 when
k < n. By the induction hypothesis,
sn =
√ 2 + √sn− 1
√ 2 + √sn− 2 = sn− 1
By the induction, {sn} is strictly increasing. Next, I show that {sn} is bounded by 2. Similarly, I apply the induction again. Hence {sn} is strictly increasing and bounded, that is, {sn} converges.
∑ √an n if an ≥ 0. Proof: By Cauchy’s inequality, ∑^ k n=
an
∑k n=
n^2 ≥
∑^ k n=
an
√a n n
for all n ∈ N. Also, both ∑^ an and ∑^ n^12 are convergent; thus ∑kn=1 an
√an n is bounded. Besides,
√an n ≥^ 0 for all^ n. Hence^
∑ √an n is convergent.
(a)
∑ n^3 zn, (b)
∑ 2 n n! z
n, (c) ∑^2 n n^2 z
n, (d) ∑^ n^3 3 n^ z
n.
all n > m ≥ N 2. Take N = max(N 1 , N 2 ). Thus
> (^) 1 +am a m
(^) 1 + 1 am + ... + (^) 1 + 1an
= am^ +^ ... 2 +^ an
for all n > m ≥ N. Thus
am + ... + an < 2
for all n > m ≥ N. It is a contradiction. Hence ∑^ 1+anan diverges. Proof of (b):
aN + sN +1^ +^ ...^ +^
aN +k sN +k^ ≥^
aN + sN +k^ +^ ...^ +^
aN +k sN +k = aN^ +1^ +^ ...^ +^ aN^ +k sN +k = sN^ + sk^ −^ sN N +k = 1 − (^) ssN N +k
If ∑^ a snn converges, for any > 0 there exists N such that
am sm^ +^ ...^ +^
an sn^ <
for all m, n whenever n > m ≥ N. Fix m = N and let n = N + k. Thus
> a sm m
... + a sn n = a sN N
... + a sN^ +k N +k ≥ 1 − (^) ssN N +k
for all k ∈ N. But sN +k → ∞ as k → ∞ since ∑^ an diverges and an > 0. Take = 1/2 and we obtain a contradiction. Hence ∑^ a snn diverges.
Proof of (c):
sn− 1 ≤ sn ⇔ (^) s^12 n
≤ (^) s^1 nsn− 1 ⇔ a sn 2 n
≤ (^) san nsn− 1
= sn s^ −^ sn−^1 nsn− 1 ⇔ a sn 2 n
≤ (^) s^1 n− 1
− (^) s^1 n for all n.
Hence ∑^ k n=
an s^2 n^ ≤
∑^ k n=
( (^) s^1 n− 1
− (^) s^1 n
= (^) s^1 1
− (^) s^1 n
Note that (^) s^1 n → 0 as n → ∞ since ∑^ an diverges. Hence ∑^ a s (^2) nn converges.
Proof of (d): ∑^ 1+anann may converge or diverge, and ∑^ 1+ann (^2) an con- verges. To see this, we put an = 1/n. (^) 1+anann = (^21) n , that is, ∑^ 1+anann = 2 ∑^1 /n diverges. Besides, if we put
an = (^) n(log^1 n)p
where p > 1 and n ≥ 2, then an 1 + nan^ =^
n(log n)^2 p((log n)p^ + 1) < 1 2 n(log n)^3 p for large enough n. By Theorem 3.25 and Theorem 3.29, ∑^ 1+anann converges. Next, ∑ (^) an 1 + n^2 an^ =^
1 /an + n^2
for all n > N. But rn → 0 as n → ∞; thus a rmm + ... + a rnn → 1 as n → ∞. If we take = 1/2, we will get a contradiction.
Proof of (b): Note that
rn+1 < rn ⇔ √rn+1 <
rn ⇔
rn + √rn+1 < 2
rn ⇔
√r n +^ √r √ n+ rn
rn − √rn+1)
√r n +^ √r √ n+ rn^ <^ 2(
rn − √rn+1)
⇔ rn^ − √^ rrn+ n
rn − √rn+1)
⇔ √arn n
< 2(√rn − √rn+1)
since an > 0 for all n.
Hence,
∑^ k n=
√^ an rn^ <
∑^ k n=
2(√rn − √rn+1) = 2(√r 1 − √rk+1)
Note that rn → 0 as n → ∞. Thus ∑^ √arnn is bounded. Hence ∑^ √arnn converges.
Note: If we say ∑^ an converges faster than ∑^ bn, it means that
nlim→∞^ an bn
According the above exercise, we can construct a faster convergent se- ries from a known convergent one easily. It implies that there is no perfect tests to test all convergences of the series from a known con- vergent one.
Note: Given ∑^ an and ∑^ bn, we put cn = ∑nk=0 akbn−k and call ∑^ cn the Cauchy product of the two given series.
Proof: Put An = ∑nk=0 |ak|, Bn = ∑nk=0 |bk|, Cn = ∑nk=0 |ck|. Then
Cn = |a 0 b 0 | + |a 0 b 1 + a 1 b 0 | + ... + |a 0 bn + a 1 bn− 1 + ... + anb 0 | ≤ |a 0 ||b 0 | + (|a 0 ||b 1 | + |a 1 ||b 0 |) + ... +(|a 0 ||bn| + |a 1 ||bn− 1 | + ... + |an||b 0 |) = |a 0 |Bn + |a 1 |Bn− 1 + ... + |an|B 0 ≤ |a 0 |Bn + |a 1 |Bn + ... + |an|Bn = (|a 0 | + |a 1 | + ... + |an|)Bn = AnBn ≤ AB
where A = lim An and B = lim Bn. Hence {Cn} is bounded. Note that {Cn} is increasing, and thus Cn is a convergent sequence, that is, the Cauchy product of two absolutely convergent series converges absolutely.
σn = s^0 +^ s n^1 ++ 1^ ... +^ sn(n = 0, 1 , 2 , ...).
(a) If lim sn = s, prove that lim σn = s. (b) Construct a sequence {sn} which does not converge, although lim σn =
(c) Can it happen that sn > 0 for all n and that lim sup sn = ∞, although lim σn = 0?
Choose M > 0 such that |tn| ≤ M for all n. Given > 0, choose N so that n > N implies |tn| < . Taking n > N in τn = (t 0 + t 1 + ... + tn)/(n + 1), and then
|τn| ≤ |t^0 |^ + n^ ... + 1^ + |tN^ |+ |tN^ +1 n^ + + 1^ ...^ +^ |tn
< (Nn^ + 1) + 1M + .
Hence, lim supn→∞ |τn| ≤ . Since is arbitrary, it follows that limn→∞ |τn| = 0, that is, lim σn = s.
Proof of (b): Let sn = (−1)n. Hence |σn| ≤ 1 /(n + 1), that is, lim σn = 0. However, lim sn does not exists.
Proof of (c): Let
sn =
1 , n = 0, n^1 /^4 + n−^1 , n = k^2 for some integer k, n−^1 , otherwise.
It is obvious that sn > 0 and lim sup sn = ∞. Also,
s 0 + ... + sn = 1 + nn−^1 +
n
⌋ n^1 /^4 = 2 +
n
⌋ n^1 /^4.
That is,
σn = (^) n + 1^2 + b
nc n^1 /^4 n + 1 The first term 2/(n + 1) → 0 as n → ∞. Note that
0 ≤ b
nc n^1 /^4 n + 1 < n
1 / (^2) n 1 / (^4) n− (^1) = n− 1 / (^4).
It implies that the last term → 0. Hence, lim σn = 0.
Proof of (d):
∑^ n k=
kak =
∑^ n k=
k(sk − sk− 1 ) =
∑^ n k=
ksk −
∑^ n k=
ksk− 1
=
∑^ n k=
ksk −
n∑− 1 k=
(k + 1)sk
= nsn +
n∑− 1 k=
ksk −
n∑− 1 k=
(k + 1)sk − s 0
= nsn −
n∑− 1 k=
sk − s 0 = (n + 1)sn −
∑^ n k=
sk = (n + 1)(sn − σn).
That is,
sn − σn = (^) n + 1^1
∑^ n k=
kak.
Note that {nan} is a complex sequence. By (a),
nlim→∞
n + 1
∑^ n k=
kak
) = limn→∞ nan = 0.
Also, lim σn = σ. Hence by the previous equation, lim s = σ.
Proof of (e): If m < n, then
∑^ n i=m+
(sn − si) + (m + 1)(σn − σm)
= (n − m)sn −
∑^ n i=m+
si + (m + 1)(σn − σm)
= (n − m)sn −
( (^) ∑n i=
si −
∑^ m i=
si
)
α, and define x 2 , x 3 , x 4 , ..., by the recursion formula
xn+1 =^1 2 (xn + α xn
(a) Prove that {xn} decreases monotonically and that lim xn = √α. (b) Put n = xn − √α, and show that
n+1 =
(^2) n 2 xn^ <^
^2 n 2 √α so that, setting β = 2√α,
n+1 < β( β^1 )^2 n (n = 1, 2 , 3 , ...).
(c) This is a good algorithm for computing square roots, since the recursion formula is simple and the convergence is extremely rapid. For example, if α = 3 and x 1 = 2, show that 1 /β < 101 and therefore 5 < 4 · 10 −^16 , 6 < 4 · 10 −^32.
Proof of (a):
xn − xn+1 = xn −
2 (xn^ +^
α xn^ ) = 12 (xn − (^) xα n
= 12 (x
(^2) n − α xn^ )
0 since xn > α. Hence {xn} decreases monotonically. Also, {xn} is bounded by 0; thus {xn} converges. Let lim xn = x. Hence
lim xn+1 = lim^1 2 (xn + α xn ) ⇔ x =^1 2 (x + α x
⇔ x^2 = α.
Note that xn > 0 for all n. Thus x =
α. lim xn =
α. Proof of (b):
xn+1 =^1 2 (xn + α xn
⇒ xn+1 −
α =^12 (xn + (^) xα n
α
⇒ xn+1 −
α =^12 x
(^2) n − 2 xn^ √α + α xn ⇒ xn+1 −
α = (xn^ −
√α) 2 2 xn ⇒ n+1 =
(^2) n 2 xn^ <^
^2 n 2 √α. Hence n+1 < β( β^1 )^2 n where β = 2√α by induction. Proof of (c): 1 β =
Thus
5 < β( β^1 )^24 < 2
6 < β( β^1 )^25 < 2
Note: It is an application of Newton’s method. Let f (x) = x^2 − α in Exercise 5.25.
(b) Let X∗^ be the set of all equivalence classes so obtained. If P ∈ X∗, Q ∈ X∗, {pn} ∈ P , {qn} ∈ Q, define 4 (P, Q) = limn→∞ d(pn, qn); by Exercise 23, this limit exists. Show that the number 4 (P, Q) is unchanged if {pn} and {qn} are replaced by equivalent sequences, and hence that 4 is a distance function in X∗.
(c) Prove that the resulting metric space X∗^ is complete. Proof of (a): Suppose there are three Cauchy sequences {pn}, {qn}, and {rn}. First, d(pn, pn) = 0 for all n. Hence, d(pn, pn) = 0 as n → ∞. Thus it is reflexive. Next, d(qn, pn) = d(pn, qn) → 0 as n → ∞. Thus it is symmetric. Finally, if d(pn, qn) → 0 as n → ∞ and if d(qn, rn) → 0 as n → ∞, d(pn, rn) ≤ d(pn, qn) + d(qn, rn) → 0 + 0 = 0 as n → ∞. Thus it is transitive. Hence this is an equivalence relation. Proof of (b): Proof of (c): Let {Pn} be a Cauchy sequence in (X∗, 4 ). We wish to show that there is a point P ∈ X∗^ such that 4 (Pn, P ) → 0 as n → ∞. For each Pn, there is a Cauchy sequence in X, denoted {Qkn}, such that 4 (Pn, Qkn) → 0 as k → ∞. Let n > 0 be a sequence tending to 0 as n → ∞. From the double sequence {Qkn} we can extract a subsequence Q′ n such that 4 (Pn, Q′ n) < n for all n. From the triangle inequality, it follows that 4 (Q′ n, Q′ m) ≤ 4(Q′ n, Pn) + 4 (Pn, Pm) + 4 (Pm, Q′ m). (1)
Since {Pn} is a Cauchy sequence, given > 0, there is an N > 0 such that 4 (Pn, Pm) < for m, n > N. We choose m and n so large that m < , n < . Thus (1) shows that {Q′ n} is a Cauchy sequence in X. Let P be the corresponding equivalence class in S. Since
4 (P, Pn) ≤ 4(P, Q′ n) + 4 (Q′ n, Pn) < 2
for n > N , we conclude that Pn → P as n → ∞. That is, X∗^ is complete.