





Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Este documento ofrece una detallada descripción de los tratamientos térmicos y termoquímicos del acero, sus tipos, procesos y aplicaciones. Se explican los objetivos de estos tratamientos, como aumentar la dureza y resistencia, así como los beneficios de cada uno, como la buena eliminación de oxidación o la disminución del rozamiento. Se incluyen ejemplos de aceros para cementación y nitruración, así como las temperaturas de trabajo y aplicaciones de cada tratamiento.
Tipo: Exámenes
1 / 9
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Tratamiento térmico es proceso que comprende el calentamiento de los metales o las aleaciones en estado sólido a temperaturas definidas, manteniéndolas a esa temperatura por suficiente tiempo, seguido de un enfriamiento a las velocidades adecuadas con el fin de mejorar sus propiedades físicas y mecánicas, especialmente la dureza, la resistencia y la elasticidad.
Las características mecánicas de un material dependen tanto de su composición química como de la estructura cristalina que tenga. Los tratamientos térmicos modifican esa estructura cristalina sin alterar la composición química, dando a los materiales unas características mecánicas concretas, mediante un proceso de calentamientos y enfriamientos sucesivos hasta conseguir la estructura cristalina deseada.
Entre estas características están:
Resistencia al desgaste: Es la resistencia que ofrece un material a dejarse erosionar cuando está en contacto de fricción con otro material. Tenacidad: Es la capacidad que tiene un material de absorber energía sin producir fisuras (resistencia al impacto). Mecanizabilidad: Es la facilidad que posee un material de permitir el proceso de mecanizado por arranque de viruta. Dureza: Es la resistencia que ofrece un acero para dejarse penetrar. Se mide en unidades BRINELL (HB), unidades ROCKWEL C (HRC), VICKERS (HV),etc. Dureza Vickers mediante el test del mismo nombre. La propiedad de tener diferentes estructuras de grano con la misma composición química se llama polimorfismo y es la que justifica los térmicos.
Técnicamente el poliformismo es la capacidad de algunos materiales de presentar distintas estructuras cristalinas, con una única composición química, el diamante y el grafito son polimorfismos del carbono. La α-ferrita, la austenita y la δ-ferrita son polimorfismos del hierro.
Esta propiedad en un elemento químico puro se denomina alotropía. Por lo tanto las diferentes estructuras de grano pueden ser modificadas, obteniendo así aceros con nuevas propiedades mecánicas, pero siempre manteniendo la composición química.
Estas propiedades varían de acuerdo al tratamiento que se le dé al acero dependiendo de la temperatura hasta la cual se lo caliente y de cómo se enfría el mismo. La forma que tendrá el grano y los microconstituyentes que compondrán al acero, sabiendo la composición química del mismo (esto es porcentaje de Carbono y Hierro (Fe3) y la temperatura a la que se encuentra, se puede ver en el Diagrama Hierro Carbono.
Revenido
El revenido sólo se aplica a aceros previamente templados, para disminuir ligeramente los efectos del temple, conservando parte de la dureza y aumentar la tenacidad. El revenido consigue disminuir la dureza y resistencia de los aceros templados, se eliminan las tensiones creadas en el temple y se mejora la tenacidad, dejando al acero con la dureza o resistencia deseada. Se distingue básicamente del temple en cuanto a temperatura máxima y velocidad de enfriamiento.
Recocido
El recocido consiste básicamente en un calentamiento hasta temperatura de austenitización (800- °C) seguido de un enfriamiento lento.
Con este tratamiento se logra aumentar la elasticidad, mientras que disminuye la dureza. También facilita el mecanizado de las piezas al homogeneizar la estructura, afinar el grano y ablandar el material, eliminando la acritud que produce el trabajo en frío y las tensiones internas.
Recocido de homogeneización
En el recocido de homogeneización, propio de los aceros hipoeutectoides, la temperatura de calentamiento es la correspondiente a A3+200ºC sin llegar en ningún caso a la curva de sólidos, realizándose en el propio horno el posterior enfriamiento lento, siendo su objetivo principal eliminar las heterogeneidades producidas durante la solidificación.
Recocido de regeneración
También llamado normalizado, tiene como función regenerar la estructura del material producido por temple o forja. Se aplica generalmente a los aceros con más del 0.6% de C, mientras que a los aceros con menor porcentaje de C sólo se les aplica para finar y ordenar su estructura.
Endurecimiento del acero
El proceso de endurecimiento del acero consiste en el calentamiento del metal de manera uniforme a la temperatura correcta (ver figura de temperaturas para endurecido de metales) y luego enfriarlo con agua, aceite, aire o en una cámara refrigerada. El endurecimiento produce una estructura granular fina que aumenta la resistencia a la tracción (tensión) y disminuye la ductilidad. El acero al carbono para herramientas se puede endurecer al calentarse hasta su temperatura crítica, la cual se adquiere aproximadamente entre los 790 y 830 °C, lo cual se identifica cuando el metal adquiere el color rojo cereza brillante. Cuando se calienta el acero, la perlita se combina con la ferrita, lo que produce una estructura de grano fino llamada austenita. Cuando se enfría la austenita de manera brusca con agua, aceite o aire, se transforma en martensita, material que es muy duro y frágil.
Los tratamientos termoquímicos son tratamientos térmicos en los que, además de los cambios en la estructura del acero, también se producen cambios en la composición química de la capa superficial, añadiendo diferentes productos químicos hasta una profundidad determinada. Estos tratamientos requieren el uso de calentamiento y enfriamiento controlados en atmósferas especiales.
Entre los objetivos más comunes de estos tratamientos están aumentar la dureza superficial de las piezas dejando el núcleo más blando y tenaz, disminuir el rozamiento aumentando el poder lubrificante, aumentar la resistencia al desgaste, aumentar la resistencia a fatiga o aumentar la resistencia a la corrosión.
Los baños de cianuro se usan generalmente en los procesos de temple de acero para impedir la descarburación de la superficie. Sus principales ventajas son: la buena eliminación de oxidación, la profundidad de la superficie es duradera, el contenido de carbono se reparte homogéneamente y de gran rapidez de penetración. También posee ciertas desventajas como son: el lavado de las piezas posterior al tratamiento para prevenir la herrumbre, la revisión de la composición del baño ha de ser de forma periódica y la alta peligrosidad de las sales de cianuro, dado que éstas son venenosas.
La carbonitruración es un procedimiento que consiste en endurecer superficialmente el acero, en este tratamiento termoquímico se promueve el enriquecimiento superficial simultáneo con carbono y nitrógeno, con el objetivo de obtener superficies extremadamente duras y un núcleo tenaz, sumado a otras propiedades mecánicas como resistencia a la fatiga, resistencia al desgaste y resistencia a la torsión. Una ventaja significativa es que presenta muy poca deformación debido a que el nitrógeno absorbido en el proceso disminuye la velocidad crítica de temple del acero. En este proceso se consiguen capas hasta de 1,5 mm, en nuestro caso lo hacemos en hornos de atmósfera controlada.
SULFINIZACIÓN La sulfinización es un tratamiento termoquímico en el cual se introduce superficialmente azufre al acero. El objetivo no es mejorar las propiedades mecánicas sino mejorar su comportamiento frente al mecanizado. Se realiza en piezas ya terminadas. Consiste en elevar la temperatura de la pieza a 575°C aproximadamente en un baño de sales que ceden carbono, nitrógeno y azufre (estos dos últimos en menor cantidad), en aleaciones férreas y de cobre.
La nitruración es un tratamiento térmico empleado para el endurecimiento superficial de ciertas piezas, principalmente aceros. Es especialmente recomendable para aceros aleados con cromo, vanadio, aluminio, wolframio y molibdeno, ya que forman nitruros estables a la temperatura de tratamiento. Son estos nitruros los que proporcionan la dureza buscada
Aceros para cementación al carbono. La cementación ser realiza entre 900 ºC y 950 ºC, el primer temple se realiza entre 875 ºC y 925 ºC en agua o aceite, el segundo temple se realiza entre 925 ºC y 775 ºC en agua, y el revenido a una temperatura máxima de 200 ºC. Se utiliza para piezas poco cargadas y de espesor reducido, de poca responsabilidad y escasa tenacidad en el núcleo. Aceros para cementación al cromo-níquel (Cr-Ni) de 125kgf/mm2. Tiene una composición de cromo de 1 % y de níquel un 4,15 %. La cementación se realiza entre 850 ºC y 900 ºC, el primer temple entre 825 ºC y 900 ºC en aceite, el segundo temple se realiza entre 725 ºC y 800 ºC, y el revenido a una temperatura máxima de 200 ºC. Se utiliza para piezas de gran resistencia en el núcleo y buena tenacidad. Elementos de máquinas y motores, engranajes, levas, etc. Aceros para cementación al cromo-molibdeno (Cr-Mo) de 95 kgf/mm2. Tiene una composición de cromo de 1,15 % y de molibdeno un 0,20 %. La cementación se realiza entre 875 ºC y 950 ºC, el primer temple se realiza entre 875 ºC y 900 ºC en aceite, el segundo temple se realiza entre 775 ºC y 825 ºC en aceite, y el revenido a una temperatura máxima de 200 ºC. Se utiliza para piezas de automóviles y maquinaria de gran dureza superficial y núcleo resistente. Piezas que sufran gran desgaste y transmitan esfuerzos elevados, engranajes, levas, etc. Aceros para cementación al cromo-níquel-molibdeno (Cr-Ni-Mo) de 135 kgf/mm2. Tiene una composición de cromo de 0,65 %, de níquel un 4 %, y de molibdeno un 0,25 %. La cementación se realiza entre 850 ºC y 950 ºC, el primer temple se realiza entre 825 ºC y 875 ºC en aire o aceite, el segundo temple se realiza entre 725 ºC y 775 ºC en aceite, y el revenido a una temperatura máxima de 200 ºC. Se utiliza para piezas de grandes dimensiones de alta resistencia y dureza superficial. Máquinas y motores de máxima responsabilidad., ruedas dentadas, etc.
Acero para nitruración al Cr-Mo-V de alta resistencia. La composición extra de este acero es la siguiente: 0,32 % C, 3,25% Cr, 0,40% Mo y 0,22%V. Una vez tratado alcanza una resistencia mecánica de 120 kg/mm2. La capa nitrurada se adhiere muy bien al núcleo sin temor a descascarillamiento. Se utiliza para construir piezas de gran resistencia y elevada dureza superficial para resistir el desgaste. Acero para nitruración al Cr-Mo-V de resistencia media. La composición extra de este acero es 0,25% C, 3,25%Cr, 0,40% Mo y 0,25% V. Tiene características y aplicaciones parecidos al anterior, solamente que su resistencia mecánica es de 100kg/mm2. Acero para nitruración al Cr-Al-Mo de alta dureza. La composición extra de este acero es 0,40% C, 1,50% Cr, 0,20% Mo y 1% Al. La capa nitrurada de este acero puede descascarillarse y es de gran fragilidad. Se utiliza para piezas que soporten una resistencia media y la mayor dureza superficial posible. Este tratamiento también es aplicable a algunos aceros inoxidables, aceros al cromo-níquel y ciertas fundiciones al aluminio o al cromo.