Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Control Numérico: Orígenes, Funciones y Códigos - Prof. Palacios Pitalua, Apuntes de Diseño gráfico

El control numérico es un sistema de programación para máquinas herramientas que utiliza códigos numéricos para indicar órdenes. Aprende sobre su origen, funciones y códigos específicos para una fresadora.

Tipo: Apuntes

2020/2021

Subido el 01/06/2021

wendy-monserrat-morales-cruz
wendy-monserrat-morales-cruz 🇲🇽

1 documento

1 / 57

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
INSTITUTO TECNOLOGICO SUPERIOR DE SAN ANDRES
TUXTLA
CARRERA:
INGENIERIA ELECTROMECANICA
GRUPO:
602-B
MATERIA:
MANUFACTURA AVANZADA
DOCENTE:
GUILLERMO PALACIOS PITALUA
ALUMNO:
WENDY MONSERRAT MORALES CRUZ
MATRICULA:
181U0681
UNIDAD 1:
INTRODUCCION A L4A MANUFACTURA AVANZADA
SAN ANDRES TUXTLA,VER. 06 DE MARZO DEL 2021
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39

Vista previa parcial del texto

¡Descarga Control Numérico: Orígenes, Funciones y Códigos - Prof. Palacios Pitalua y más Apuntes en PDF de Diseño gráfico solo en Docsity!

INSTITUTO TECNOLOGICO SUPERIOR DE SAN ANDRES

TUXTLA

CARRERA:

INGENIERIA ELECTROMECANICA

GRUPO:

602 - B

MATERIA:

MANUFACTURA AVANZADA

DOCENTE:

GUILLERMO PALACIOS PITALUA

ALUMNO:

WENDY MONSERRAT MORALES CRUZ

MATRICULA:

181U

UNIDAD 1:

INTRODUCCION A L4A MANUFACTURA AVANZADA

SAN ANDRES TUXTLA,VER. 06 DE MARZO DEL 2021

CONTROL NUMERICO “CNC”

INTRODUCCIÓN AL CONTROL NUMÉRICO COMPUTARIZADO

El CNC tuvo su origen a principios de los años cincuenta en el Instituto de Tecnología de Massachusetts (MIT), en donde se automatizó por primera vez una gran fresadora. En esta época las computadoras estaban en sus inicios y eran tan grandes que el espacio ocupado por la computadora era mayor que el de la máquina. Hoy día las computadoras son cada vez más pequeñas y económicas, con lo que el uso del CNC se ha extendido a todo tipo de maquinaria: tornos, rectificadoras, eletroerosionadoras, máquinas de coser, etc. CNC significa "control numérico computarizado". En una máquina CNC, a diferencia de una máquina convencional o manual, una computadora controla la posición y velocidad de los motores que accionan los ejes de la máquina. Gracias a esto, puede hacer movimientos que no se pueden lograr manualmente como círculos, líneas diagonales y figuras complejas tridimensionales. Las máquinas CNC son capaces de mover la herramienta al mismo tiempo en los tres ejes para ejecutar trayectorias tridimensionales como las que se requieren para el maquinado de complejos moldes y troqueles como se muestra en la imagen. En una máquina CNC una computadora controla el movimiento de la mesa, el carro y el husillo. Una vez programada la máquina, ésta ejecuta todas las operaciones por sí sola, sin necesidad de que el operador esté manejándola.

en pantalla y funciones de ayuda geométrica. Todo esto hace la programación mucho más rápida y sencilla. También se emplean sistemas CAD/CAM que generan el programa de maquinado de forma automática. En el sistema CAD (diseño asistido por computadora) la pieza que se desea maquinar se diseña en la computadora con herramientas de dibujo y modelado sólido. Posteriormente el sistema CAM (manufactura asistida por computadora) toma la información del diseño y genera la ruta de corte que tiene que seguir la herramienta para fabricar la pieza deseada; a partir de esta ruta de corte se crea automaticamente el programa de maquinado, el cual puede ser introducido a la máquina mediante un disco o enviado electronicamente. Hoy día los equipos CNC con la ayuda de los lenguajes conversacionales y los sistemas CAD/CAM, permiten a las empresas producir con mucha mayor rapidez y calidad sin necesidad de tener personal altamente especializado.

GENERALIDADES DEL CNC

Actualmente existe un ambiente de grandes expectativas e incertidumbre. Mucho de esto se da por los rápidos cambios de la tecnología actual, pues estos no permiten asimilarla en forma adecuada de modo que es muy difícil sacar su mejor provecho. También surgen cambios rápidos en el orden económico y político los cuales en sociedades como la nuestra (países en desarrollo) inhiben el surgimiento de soluciones autóctonas o propias para nuestros problemas más fundamentales. Entre todos estos cambios uno de los de mayor influencia lo será sin duda el desarrollo de las nuevas políticas mundiales de mercados abiertos y globalización. Todo esto habla de una libre competencia y surge la necesidad de adecuar nuestras industrias a fin de que puedan satisfacer el reto de los próximos años. Una opción o alternativa frente a esto es la reconversión de las industrias introduciendo el elemento de la automatización. Sin embargo se debe hacerse en la forma más adecuada de modo que se pueda absorber gradualmente la nueva tecnología en un tiempo adecuado; todo esto sin olvidar los factores de rendimiento de la inversión y capacidad de producción. Uno de los elementos importantes dentro de este resurgir de la automatización son la Máquinas de Herramientas de Control Numérico Computarizado, las cuales brindan algunas ventajas adicionales que son ¿Qué es el CNC? C.N.C. se refiere al control numérico de máquinas, generalmente Máquinas de Herramientas. Normalmente este tipo de control se ejerce a través de un computador y la máquina está diseñada a fin de obedecer las instrucciones de un programa dado. Esto se ejerce a través del siguiente proceso: Dibujo del procesamiento  Programación.  Interface.  Máquinas Herramientas C:N:C. La interface entre el programador y la MHCN se realiza a través de la interface, la cual puede ser una cinta perforada y codificada con la información del programa. Normalmente la MHCN posee una lectora de la cinta.

Uso del C.N.C. ¿Cuándo emplear el C.N.C? La decisión sobre el cuándo es necesario utilizar M.H.C.N.?, muchas veces se resuelve en base a un análisis de producción y rentabilidad; sin embargo en nuestros países subdesarrollados, muchas veces existe un factor inercial que impide a los empresarios realizar el salto tecnológico en la medida que estas personas se motiven a acercarse a estas tecnologías surgirán múltiples alternativas financieras y de producción que contribuirán a mejorar el aspecto de rentabilidad de este tipo de inversión. Por otro lado una vez tomado este camino se dará una rápida transferencia tecnológica a nivel de las empresas incrementando el nivel técnico. Fenómenos como éstos no son raros, pues se dan muchas veces en nuestros países al nivel de consumidores. Sobre todo en Panamá. Somos consumidores de productos de alta tecnología y nos adaptamos rápidamente a los cambios que se dan en productos tales como: Equipos de Alta Fidelidad, Automóviles, Equipo de Comunicación y Computadores. Entonces, ¿Por qué ser escépticos? y pensar que no somos capaces de adaptar nuevas tecnologías productivas a nuestra experiencia empresarial. Veamos ahora como se decide la alternativa de usar o no C.N.C. en términos de producción:  Cuando se tienen altos volúmenes de producción.  Cuando la frecuencia de producción de un mismo artículo no es muy alta.  Cuando el grado de complejidad de los artículos producidos es alto.  Cuando se realizan cambios en un artículo a fin de darle actualidad o brindar una variedad de modelos.  Cuando es necesario un alto grado de precisión.

Convencional vs Máquina C.N.C. Veamos ahora el contraste entre una máquina convencional y una máquina C.N.C. Máquina Convencional MHCH Máquina Convencional CNC Se opera por una sola persona Una^ persona^ puede^ operar muchas máquinas. Es necesario localizar por las Plano. No es necesario localizar medidas el dimensionamiento en dimensiones. Es necesario la experiencia No es necesario la experiencia. El operador tiene el control de profundidad, avance, etc. El programa tiene todo el Control de los parámetros de corte Existen trabajos que es imposible realizar. Luego que se ejecuta el Programa virtualmente se realiza cualquier trabajo. CONTROL NUMÉRICO EN LA INGENIERÍA INDUSTRIAL Definición general: Se considera control numérico a todo dispositivo capaz de dirigir posicionamientos de un órgano mecánico móvil, en el que las órdenes relativas a los desplazamientos del móvil son elaboradas en forma totalmente automática a partir de informaciones numéricas definidas, bien manualmente o por medio d Dificultades en la Industria Actual. Entre los problemas industriales de estos países desarrollados podemos mencionar:  Existe cada vez una mayor exigencia en la precisión.  Los diseños son cada vez más complejos.  La diversidad de productos hace necesario la tendencia a estructuras de producción más flexibles.  Se tiende a incrementar los tiempos de inspección.  Los costos de fabricación de moldes es mayor y se hace necesario minimizar errores.  El tiempo de entrega de los productos tiende a ser cada vez más reducido. La formación de instructores es cada vez más difícil, pues se hace necesario personal cada vez más experimentado.

VENTAJAS DEL CONTROL NUMÉRICO:

Las ventajas, dentro de los parámetros de producción explicados anteriormente son: Posibilidad de fabricación de piezas imposibles o muy difíciles. Gracias al control numérico se han podido obtener piezas muy complicadas como las superficies tridimensionales necesarias en la fabricación de aviones. Seguridad. El control numérico es especialmente recomendable para el trabajo con productos peligrosos. Precisión. Esto se debe a la mayor precisión de la máquina herramienta de control numérico respecto de las clásicas.Aumento de productividad de las máquinas. Esto se debe a la disminución del tiempo total de mecanización, en virtud de la disminución de los tiempos de desplazamiento en vacío y de la rapidez de los pocisionamientos que suministran los sistemas electrónicos de control. Reducción de controles y desechos. Esta reducción es debida fundamentalmente a la gran fiabilidad y repetitividad de una máquina herramienta con control numérico. Esta reducción de controles permite prácticamente eliminar toda operación humana posterior, con la subsiguiente reducción de costos y tiempos de fabricación.

CLASIFICACIÓN DE LOS SISTEMAS DE CONTROL NUMÉRICO.

Se dividen fundamentalmente en: Equipos de control numérico de posicionamiento o punto a punto. Equipos de control numérico de contorneo. Supongamos una pieza colocada sobre la mesa (ver figura), y que en el punto A se quiere realizar una perforación. Sea el eje X el eje longitudinal de la mesa y el eje Y el eje transversal. B representa la proyección del eje del útil sobre la mesa. El problema de llevar el punto A al punto B se puede resolver de las siguientes formas: Accionar el motor del eje Y hasta alcanzar el punto A´y a continuación el motor del eje X hasta alcanzar al punto B. Análogo al anterior, pero accionando primero el motor del eje longitudinal y después el del transversal. Estos dos modos de posicionamiento reciben el nombre de posicionamiento secuencial y se realiza normalmente a la máxima velocidad que soporta la máquina. Accionar ambos motores a la vez y a la misma velocidad. En este caso la trayectoria seguida será una recta de 45º. Una vez llegado la altura del punto B, el motor del eje Y será parado para continuar exclusivamente el motor del eje X hasta llegar al punto B. Este tipo de posicionamiento recibe el nombre de posicionamiento simultáneo (punto a punto). Accionamiento secuencial de los motores pero realizando la aproximación a un punto siempre en el mismo sentido. Este tipo de aproximación recibe el nombre de aproximación unidireccional y es utilizado exclusivamente en los posicionamientos punto a punto. En un sistema punto a punto, el control determina, a partir de la información suministrada por el programa y antes de iniciarse el movimiento, el camino total a recorrer. Posteriormente se realiza dicho posicionamiento, sin importar en absoluto la trayectoria recorrida, puesto que lo único que importa es alcanzar con precisión y rapidez el punto en cuestión. Siempre que se quiera realizar trayectorias que no sean paraxiales (rectas según los ejes) es necesario que el sistema de control posea características especiales. Los equipos que permiten generar curvas reciben el nombre de equipos de contorneo. Los sistemas de contorneo gobiernan no sólo la posición final sino también el movimiento en cada instante de los ejes en los cuales se realiza la interpolación. En estos equipos deberá existir una sincronización perfecta entre los distintos ejes, controlándose, por tanto, la trayectoria real que debe seguir la herramienta. Con estos sistemas se pueden generar recorridos tales como

que cada sensor producía una señal indicando la presencia de un agujero que sería amplificada y suministrada al equipo de control como datos de entrada. Otro medio que se utilizaba para la entrada de datos era el cassette, robusto y pequeño, era más fácil de utilizar, guardar y transportar que la cinta, siendo óptima su utilización en medios hostiles. Su capacidad variaba entra 1 y 5 Mb. Luego comenzó a utilizarse el diskette. Su característica más importante era la de tener acceso aleatorio, lo cual permitía acceder a cualquier parte del disco en menos de medio segundo. La velocidad de transferencia de datos variaba entre 250 y 500 Kb / s. Con la aparición del teclado como órgano de entrada de datos, se solucionó el problema de la modificación del programa, que no podía realizarse con la cinta perforada, además de una rápida edición de programas y una cómoda inserción y borrado de bloques, búsqueda de una dirección en memoria, etc.

UNIDAD DE MEMORIA INTERNA E INTERPRETACIÓN DE ÓRDENES.

Tanto en los equipos de programación manual como en los de programación mixta (cinta perforada o cassette y teclado), la unidad de memoria interna almacenaba no sólo el programa sino también los datos máquina y las compensaciones (aceleración y desaceleración, compensaciones y correcciones de la herramienta, etc.). Son los llamdos datos de puesta en operación. En las máquinas que poseían sólo cinta perforada como entrada de datos, se utilizaba memorias buffer. Luego, con el surgimiento del teclado y la necesidad de ampliar significativamente la memoria (debido a que se debía almacenar en la misma un programa completo de mecanizado) se comenzaron a utilizar memorias no volátiles (su información permanece almacenada aunque desaparezca la fuente de potencia del circuito, por ejemplo en el caso de un fallo en la red) de acceso aleatorio (denominadas RAM) del tipo CMOS. Además poseían una batería denominada tampón, generalmente de níquel – cadmio, que cumplían la función de guardar durante algunos días (al menos tres) todos los datos máquina en caso de fallo en la red. Una vez almacenado el programa en memoria, inicia su lectura para su posterior ejecución. Los bloques se van leyendo secuencialmente. En ellos se encuentra toda la información necesaria para la ejecución de una operación de mecanizado. UNIDAD DE CÁLCULO: Una vez interpretado un bloque de información, esta unidad se encarga de crear el conjunto de órdenes que serán utilizadas para gobernar la máquina herramienta. Como ya se dijo, este bloque de información suministra la información necesaria para la ejecución de una operación de mecanizado. Por lo tanto, una vez el programa en memoria, se inicia su ejecución. El control lee un número de bloques necesario para la realización de un ciclo de trabajo. Estos bloques del programa son interpretados por el control, que identifica: la nueva cota a alcanzar (x, y, z del nuevo punto en el caso de un equipo de tres ejes), velocidad de avance con la que se realizará el trayecto, forma a realizar el trayecto, otras informaciones como compensación de herramientas, cambio de útil, rotación o no del mismo, sentido, refrigeración, etc.). La unidad de cálculo, de acuerdo con la nueva cota a alcanzar, calcula el camino a recorrer según los diversos ejes. SERVOMECANISMOS: La función principal de un control numérico es gobernar los motores (servomotores) de una máquina herramienta, los cuales provocan un desplazamiento relativo entre el útil y la pieza situada sobre la mesa. Si consideramos un desplazamiento en el plano, será necesario accionar dos motores, en el espacio, tres motores, y así sucesivamente.

Posteriormente, se vio la necesidad de normalizar los códigos de programación como condición indispensable para que un mismo programa pudiera servir para diversas máquinas con tal de que fuesen del mismo tipo. Los caracteres más usados comúnmente, regidos bajo la norma DIN 66024 y 66025 son, entre otros, los siguientes: N es la dirección correspondiente al número de bloque o secuencia. Esta dirección va seguida normalmente de un número de tres o cuatro cifras. En el caso del formato N03, el número máximo de bloques que pueden N999). programarse es 1000 (N X, Y, Z son las direcciones correspondientes a las cotas según los ejes X, Y, Z de la máquina herramienta. Dichas cotas se pueden programar en forma absoluta o relativa, es decir, con respecto al cero pieza o con respecto a la última cota respectivamente. G es la dirección correspondiente a las funciones preparatorias. Se utilizan para informar al control de las características de las funciones de mecanizado, como por ejemplo, forma de la trayectoria, tipo de corrección de herramienta, parada temporizada, ciclos automáticos, programación absoluta y relativa, etc. La función G va seguida de un número de dos cifras que permite programar hasta 100 funciones preparatorias diferentes.

LOS FAMOSOS BLOCKS EN CN

Estructura de Block Es el modo de dar ordenes a la maquina para que se los ejecute tiene ciertas características que se debe cumplir. La maquina ejecuta las ordenes (operaciones) de otra manera por lo que cada orden tiene una estructura definida a cada orden le denominamos block o bloque de programa. De manera general cada block tiene la siguiente estructura: a) Numero de operaciones b) Código de orden de configuración c) Puntos coordenados o coordenadas d) Parámetros complementarios Formato de Block El modo básico de comunicarse con la maquina herramienta es a través de los elementos que forman la estructura de un block de instrucciones, en donde cada uno de los caracteres alfanuméricos tienen un significado y una representación propia. a b c d O N010 G21 Encabezado N020 [BILLET X 30 Z 80 N030 G N040 M06 T 1 N050 M03 S 500 N060 F 60 Procedimiento N……. N070 M N080 G28 Conclusión N090 M

d) Cinta magnética para grabación en cassette e) Ordenador para simular grafica de la pieza programada f) Discos de 3 ½" para ordenador, para activar piezas. g) Catálogos de materiales y herramientas de diversos fabricantes. CICLOS ENLATADOS O REPETITIVOS. Estos ciclos tienen la particularidad de trabajar una sola operación en un mismo sentido hasta lograr el objetivo establecido. G90: Cilindrado G92: Roscado G94: Careado – Conicidad Conicidad G X: Es la posición final de corte Z: Es la posición final de corte R: Siempre va ha ser negativo (cuadro de corte – z). El signo de R depende de la dirección de la conicidad. La función G94 es un ciclo enlatado, una línea de información del programa capacitara a la herramienta para ejecutar cuatro movimientos distintos. R: Distancia incremental del comienzo el corte a la posición final del corte.

Ciclo de Roscado El código G92 nos permite realizar la operación de roscado o cuerda en algún diseño de pieza. La función de este es de manera cíclica que se mete contemplando los factores de importancia. El avance o paso y la profundidad total de maquinado. Realizándose solo cuerdas estándar. 1° Punto Previo 2° Velocidad de corte X: Profundidad del corte Z: Longitud total de la cuerda F: Avance (paso) 60° = 0.8660 (0.75) = 0. 0.649 (2) = 1. 16/25.4 = 1.587 16 hilos x pulgada (1.3) (1.587) = 2.063 ® Profundidad Total. Si se tiene una medida de 10.0, se le resta la profundidad total y nos queda una medida de 7. Radios de Curvatura El código G02 nos permite realizar radios en sentido derecho o sentido horario (va conforme a las manecillas del reloj). El código G03 permite realizar radios en sentido izquierdo o sentido de horario Radios de Curvatura Luter Polacion Circular Puntos para aplicar el código G02 y G03 Ejecución 1° Punto Previo 2° Punto Inicial del arco 3° Punto Final del arco (va a estar dado por x_ z_) 4° Sentido en que se debe mover la herramienta 5° Indicar el radio(R-)