Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

experimentacion fisica 1, Ejercicios de Química Aplicada

los nematodos son memos que van navegando con gusanos redondos o cilindricos

Tipo: Ejercicios

2018/2019

Subido el 27/02/2019

juan-diego-fernandez-palacios
juan-diego-fernandez-palacios 🇨🇴

1 documento

1 / 14

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
Table of Basic Integrals
Basic Forms
(1) Zxndx =1
n+ 1xn+1, n 6=1
(2) Z1
xdx = ln |x|
(3) Zudv =uv Zvdu
(4) Z1
ax +bdx =1
aln |ax +b|
Integrals of Rational Functions
(5) Z1
(x+a)2dx =1
x+a
(6) Z(x+a)ndx =(x+a)n+1
n+ 1 , n 6=1
(7) Zx(x+a)ndx =(x+a)n+1((n+ 1)xa)
(n+ 1)(n+ 2)
(8) Z1
1 + x2dx = tan1x
(9) Z1
a2+x2dx =1
atan1x
a
1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe

Vista previa parcial del texto

¡Descarga experimentacion fisica 1 y más Ejercicios en PDF de Química Aplicada solo en Docsity!

Table of Basic Integrals

Basic Forms

xndx =

n + 1 xn+1, n 6 = − 1

x dx = ln |x|

udv = uv −

vdu

ax + b dx =

a ln |ax + b|

Integrals of Rational Functions

(x + a)^2 dx = −

x + a

(x + a)ndx = (x + a)n+ n + 1 , n 6 = − 1

x(x + a)ndx = (x + a)n+1((n + 1)x − a) (n + 1)(n + 2)

1 + x^2 dx = tan−^1 x

a^2 + x^2 dx =

a tan−^1 x a

x a^2 + x^2 dx =

ln |a^2 + x^2 |

x^2 a^2 + x^2 dx = x − a tan−^1 x a

x^3 a^2 + x^2

dx =

x^2 −

a^2 ln |a^2 + x^2 |

ax^2 + bx + c

dx =

4 ac − b^2

tan−^1 2 ax + b √ 4 ac − b^2

(x + a)(x + b) dx =

b − a ln a + x b + x , a 6 = b

x (x + a)^2 dx = a a + x

  • ln |a + x|

x ax^2 + bx + c dx =

2 a ln |ax^2 +bx+c|− b a

4 ac − b^2

tan−^1 2 ax + b √ 4 ac − b^2

Integrals with Roots

x − a dx =

(x − a)^3 /^2

x ± a

dx = 2

x ± a

a − x

dx = − 2

a − x

a^2 − x^2 dx =

x

a^2 − x^2 +

a^2 tan−^1 x √ a^2 − x^2

x

x^2 ± a^2 dx =

x^2 ± a^2

x^2 ± a^2

dx = ln

∣∣x + √x (^2) ± a 2

√^1

a^2 − x^2

dx = sin−^1 x a

x √ x^2 ± a^2

dx =

x^2 ± a^2

x √ a^2 − x^2

dx = −

a^2 − x^2

x^2 √ x^2 ± a^2

dx =

x

x^2 ± a^2 ∓

a^2 ln

∣x^ +^

x^2 ± a^2

ax^2 + bx + c dx = b + 2ax 4 a

ax^2 + bx + c+ 4 ac − b^2 8 a^3 /^2

ln

∣^2 ax^ +^ b^ + 2

a(ax^2 + bx+c)

x

ax^2 + bx + c dx =

48 a^5 /^2

a

ax^2 + bx + c

− 3 b^2 + 2abx + 8a(c + ax^2 )

+3(b^3 − 4 abc) ln

∣b + 2ax + 2

a

ax^2 + bx + c

ax^2 + bx + c

dx =

a ln

∣^2 ax^ +^ b^ + 2

a(ax^2 + bx + c)

x √ ax^2 + bx + c

dx =

a

ax^2 + bx + c− b 2 a^3 /^2 ln

∣∣ 2 ax + b + 2√a(ax (^2) + bx + c)

dx (a^2 + x^2 )^3 /^2

x a^2

a^2 + x^2

Integrals with Logarithms

ln ax dx = x ln ax − x

x ln x dx =

x^2 ln x − x^2 4

x^2 ln x dx =

x^3 ln x − x^3 9

xn^ ln x dx = xn+

ln x n + 1

(n + 1)^2

, n 6 = − 1

ln ax x dx =

(ln ax)^2

ln x x^2 dx = −

x

ln x x

Integrals with Exponentials

eax^ dx =

a eax

xeax^ dx =

a

xeax^ + i

π 2 a^3 /^2 erf

i

ax

, where erf(x) =

√^2

π

∫ (^) x

0

e−t 2 dt

xex^ dx = (x − 1)ex

xeax^ dx =

x a

a^2

eax

x^2 ex^ dx =

x^2 − 2 x + 2

ex

x^2 eax^ dx =

x^2 a

2 x a^2

a^3

eax

x^3 ex^ dx =

x^3 − 3 x^2 + 6x − 6

ex

xneax^ dx = xneax a

n a

xn−^1 eax^ dx

xneax^ dx = (−1)n an+^ Γ[1 + n, −ax], where Γ(a, x) =

x

ta−^1 e−t^ dt

eax 2 dx = − i

π 2

a erf

ix

a

e−ax^2 dx =

π 2

a

erf

x

a

xe−ax 2 dx = −

2 a e−ax 2

x^2 e−ax 2 dx =

π a^3 erf(x

a) − x 2 a e−ax 2

Integrals with Trigonometric Functions

sin ax dx = −

a cos ax

sin^2 ax dx = x 2

sin 2ax 4 a

sin^3 ax dx = − 3 cos ax 4 a

cos 3ax 12 a

sinn^ ax dx = −

a cos ax 2 F 1

[

1 − n 2

, cos^2 ax

]

cos ax dx =

a

sin ax

cos^2 ax dx = x 2

sin 2ax 4 a

cos^3 axdx = 3 sin ax 4 a

sin 3ax 12 a

tan^2 ax dx = −x +

a tan ax

tann^ ax dx = tann+1^ ax a(1 + n)

× 2 F 1

n + 1 2

n + 3 2 , − tan^2 ax

tan^3 axdx =

a ln cos ax +

2 a sec^2 ax

sec x dx = ln | sec x + tan x| = 2 tanh−^1

tan x 2

sec^2 ax dx =

a

tan ax

sec^3 x dx =

sec x tan x +

ln | sec x + tan x|

sec x tan x dx = sec x

sec^2 x tan x dx =

sec^2 x

secn^ x tan x dx =

n

secn^ x, n 6 = 0

csc x dx = ln

∣tan^

x 2

∣ = ln^ |^ csc^ x^ −^ cot^ x|^ +^ C

csc^2 ax dx = −

a cot ax

csc^3 x dx = −

cot x csc x +

ln | csc x − cot x|

cscn^ x cot x dx = −

n cscn^ x, n 6 = 0

sec x csc x dx = ln | tan x|

Products of Trigonometric Functions and Mono-

mials

x cos x dx = cos x + x sin x

x cos ax dx =

a^2 cos ax + x a sin ax

x^2 cos x dx = 2x cos x +

x^2 − 2

sin x

x^2 cos ax dx = 2 x cos ax a^2

a^2 x^2 − 2 a^3 sin ax

xn^ cos xdx = −

(i)n+1^ [Γ(n + 1, −ix) + (−1)nΓ(n + 1, ix)]

Products of Trigonometric Functions and Ex-

ponentials

ex^ sin x dx =

ex(sin x − cos x)

ebx^ sin ax dx =

a^2 + b^2 ebx(b sin ax − a cos ax)

ex^ cos x dx =

ex(sin x + cos x)

ebx^ cos ax dx =

a^2 + b^2 ebx(a sin ax + b cos ax)

xex^ sin x dx =

ex(cos x − x cos x + x sin x)

xex^ cos x dx =

ex(x cos x − sin x + x sin x)

Integrals of Hyperbolic Functions

cosh ax dx =

a sinh ax

eax^ cosh bx dx =

eax a^2 − b^2 [a cosh bx − b sinh bx] a 6 = b e^2 ax 4 a

x 2 a = b

sinh ax dx =

a cosh ax

eax^ sinh bx dx =

eax a^2 − b^2 [−b cosh bx + a sinh bx] a 6 = b e^2 ax 4 a

x 2 a = b

tanh ax dx =

a ln cosh ax

eax^ tanh bx dx =

e(a+2b)x (a + 2b)^2

F 1

[

a 2 b

a 2 b , −e^2 bx

]

a eax 2 F 1

[

a 2 b

a 2 b , −e^2 bx

]

a 6 = b eax^ − 2 tan−^1 [eax] a

a = b

cos ax cosh bx dx =

a^2 + b^2 [a sin ax cosh bx + b cos ax sinh bx]

cos ax sinh bx dx =

a^2 + b^2 [b cos ax cosh bx + a sin ax sinh bx]

sin ax cosh bx dx =

a^2 + b^2 [−a cos ax cosh bx + b sin ax sinh bx]

sin ax sinh bx dx =

a^2 + b^2 [b cosh bx sin ax − a cos ax sinh bx]

sinh ax cosh axdx =

4 a [− 2 ax + sinh 2ax]

sinh ax cosh bx dx =

b^2 − a^2 [b cosh bx sinh ax − a cosh ax sinh bx] ©^ c 2014. From http://integral-table.com, last revised June 14, 2014. This mate- rial is provided as is without warranty or representation about the accuracy, correctness or suitability of this material for any purpose. This work is licensed under the Creative Com- mons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.