

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Este ensayo aborda la teoría de las ecuaciones diferenciales y integrales, disciplina matemática de gran interés debido a su aplicabilidad en diversas ciencias. El texto se enfoca en el desarrollo histórico de esta rama del análisis matemático, desde el surgimiento del análisis infinitesimal hasta la resolución de ecuaciones en derivadas parciales. Se destacan los papeles de newton, leibniz y otros científicos en el desarrollo de las ecuaciones diferenciales y sus aplicaciones en diferentes campos de la física, química, biología y economía.
Tipo: Apuntes
1 / 3
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Adriana Elizabeth Quijano Rodriguez - José Gregorio Pérez Manosalva - Frank Jean Pierre Gomez Salazar - Juan Andrés Fuentes Laguado - Janith Toloza López -
Ecuaciones Diferenciales
Mawency Vergel Ortega
La teoría de las ecuaciones diferenciales e integrales es con toda seguridad la disciplina de las matemáticas con una más clara motivación aplicada. Tengamos en cuenta que la inmensa mayoría de estas ecuaciones deben sus nombres a personalidades científicas de la ciencia tecnológica aplicada y surgen como modelos matemáticos asociados a diferentes fenómenos de la Física (movimiento vibratorio, difusión del calor, ...), Química (procesos de reacción-combustión), Biología (estudio de especies biológicas), Óptica (procesos de difusión de la luz), Estadística (procesos estocásticos), Economía (optimización del rendimiento), Ingeniería (diseño óptimo de vigas) por citar algunos ejemplos de la interminable lista. Por todo ello, el estudio de estas ecuaciones es muy importante y resulta de indudable interés.
Siendo ese el propósito del presente trabajo, concentraré la labor en abordar con mayor profundidad los s. XVIII y XIX vitales para el desarrollo de esta singular disciplina, invitándolos a dar un paseo científico que espero y deseo sea de su agrado.
A partir de la segunda mitad del s. XVII con el surgimiento del análisis infinitesimal por Newton y Leibniz como principales exponentes, se comienza a desarrollar el concepto de función, de diferencial así como las operaciones con éstos, surgiendo de esta forma ciertas ecuaciones las cuales fueron llamadas diferenciales, sobre las cuales se desarrolló toda una teoría para su solución. En un comienzo estas ecuaciones modelaban problemas de la Mecánica, la Hidromecánica y la Astronomía.
Particularmente en esta rama del análisis matemático se revelaba fuertemente la influencia determinante de los problemas de las ciencias exactas, en primer lugar la Mecánica y la Física Matemática y la estrecha interrelación de las investigaciones teóricas y prácticas. Sumamente necesario e importante resulta destacar el papel de las Ecuaciones en Derivadas Parciales (EDP) en los problemas de la física matemática, las cuales se desarrollaron notablemente en el s. XVIII a partir de la Teoría de la Mecánica de los Medios Continuos, así como la conducción del calor, Mecánica de los Fluidos, electromagnetismo, mecánica