Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Algebra Linear - Demonstrating Orthogonality of Linear Equations and Vector Directions, Essays (university) of Computer Networks

A university assignment submitted by student viviana andrea cardona guzmán, with code 1.007.329.801, for the algebra linear course under the program of administración de empresas at universidad nacional abierta y a distancia unad. The assignment involves demonstrating the orthogonality of the given linear equations and their vector directions. The equations are presented in matrix form and the vectors of direction are calculated and their orthogonality is proven by calculating their cross product.

What you will learn

  • How to calculate the vectors of direction for given linear equations?
  • What is the meaning of orthogonality in linear algebra?
  • How to prove the orthogonality of two vectors using their cross product?

Typology: Essays (university)

2019/2020

Uploaded on 04/13/2020

dann-ue
dann-ue 🇺🇸

1 document

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf2

Partial preview of the text

Download Algebra Linear - Demonstrating Orthogonality of Linear Equations and Vector Directions and more Essays (university) Computer Networks in PDF only on Docsity!

Unidad 2: Tarea 2 - Sistemas de ecuaciones lineales, rectas, planos y espacios vectoriales Grupo: 100408_

Presentado por estudiante Viviana Andrea Cardona Guzmán _ Código: 1.007.329.

Presentado a Tutor Gonzalo Fester

Universidad Nacional Abierta y a Distancia UNAD Escuela de Ciencias Administrativas, Contables, Económicas y de Negocios Programa: Administración De Empresas Curso: Algebra Lineal _ 100408 La Dorada Caldas 05-Abril-

Ejercicio 3

b) Demostrar si las rectas 𝑥−3 12 = 𝑦−3 16 = 7−𝑧 16 y 𝑥+2 12 = 5−𝑦−16 = 𝑧+6−

𝑥−3 12 = 𝑦−3 16 = 7−𝑧 16 𝑥+2 12 = 5−𝑦−16 = 𝑧+6−

Los vectores de dirección de las rectas son:

𝑉 1 = 12𝑖 + 16𝑗 − 16𝑘

𝑉 2 = 12𝑖 + 16𝑗 − 16𝑘

El producto 𝑉 1 y 𝑉 2 : Hacemos que el producto cruz demostrar que son ortogonales.

𝑉 1 = 𝑋 = 3 + 12 𝑌 = 3 + 16 𝑍 = 7 − 16

𝑉 2 = 𝑋 = −2 + 12 𝑌 = 5 + 16 𝑍 = −6 − 16

Hacemos el producto Cruz

𝐴 1 = [𝑖 𝑗 𝑘 12 16 − 16 12 + 16 − 16 ] = 𝑖|16 − 16 16 − 16 | = 𝑗 |12 − 16 12 − 16 | = 𝑘 |12 16 12 + 16 | 𝑨 = 𝟎𝒊 − 𝟎𝒋 + 𝟎𝒌 = 𝟎 𝑶𝒓𝒕𝒐𝒈𝒂𝒍𝒆𝒔