

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A university assignment submitted by student viviana andrea cardona guzmán, with code 1.007.329.801, for the algebra linear course under the program of administración de empresas at universidad nacional abierta y a distancia unad. The assignment involves demonstrating the orthogonality of the given linear equations and their vector directions. The equations are presented in matrix form and the vectors of direction are calculated and their orthogonality is proven by calculating their cross product.
What you will learn
Typology: Essays (university)
1 / 2
This page cannot be seen from the preview
Don't miss anything!
Unidad 2: Tarea 2 - Sistemas de ecuaciones lineales, rectas, planos y espacios vectoriales Grupo: 100408_
Presentado por estudiante Viviana Andrea Cardona Guzmán _ Código: 1.007.329.
Presentado a Tutor Gonzalo Fester
Universidad Nacional Abierta y a Distancia UNAD Escuela de Ciencias Administrativas, Contables, Económicas y de Negocios Programa: Administración De Empresas Curso: Algebra Lineal _ 100408 La Dorada Caldas 05-Abril-
Ejercicio 3
b) Demostrar si las rectas 𝑥−3 12 = 𝑦−3 16 = 7−𝑧 16 y 𝑥+2 12 = 5−𝑦−16 = 𝑧+6−
𝑥−3 12 = 𝑦−3 16 = 7−𝑧 16 𝑥+2 12 = 5−𝑦−16 = 𝑧+6−
Los vectores de dirección de las rectas son:
𝑉 1 = 12𝑖 + 16𝑗 − 16𝑘
𝑉 2 = 12𝑖 + 16𝑗 − 16𝑘
El producto 𝑉 1 y 𝑉 2 : Hacemos que el producto cruz demostrar que son ortogonales.
𝑉 1 = 𝑋 = 3 + 12 𝑌 = 3 + 16 𝑍 = 7 − 16
𝑉 2 = 𝑋 = −2 + 12 𝑌 = 5 + 16 𝑍 = −6 − 16
Hacemos el producto Cruz
𝐴 1 = [𝑖 𝑗 𝑘 12 16 − 16 12 + 16 − 16 ] = 𝑖|16 − 16 16 − 16 | = 𝑗 |12 − 16 12 − 16 | = 𝑘 |12 16 12 + 16 | 𝑨 = 𝟎𝒊 − 𝟎𝒋 + 𝟎𝒌 = 𝟎 𝑶𝒓𝒕𝒐𝒈𝒂𝒍𝒆𝒔