Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Unit Vector Notation, Summaries of Calculus

This is known as the unit vector notation of a vector. If the vector is restricted to the x-y plane, then γ = 90◦. This makes (figure 3),. Vz = 0 ...

Typology: Summaries

2021/2022

Uploaded on 09/27/2022

birkinshaw
birkinshaw 🇺🇸

4.7

(9)

239 documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Unit Vector Notation
1 Definitions
Figure 1 shows the definition of components of a vector ~
V. The angles α,βand γare the angles
that the vector makes to the three coordinate axes x,yand zrespectively. The dashed lines are
perpendiculars drawn from the tip of the vector to the three coordinate axis. The components
Vx,Vyand Vzof ~
Vare defined to be the segments of the coordinate axes marked out by these
perpendiculars as shown. Hence, using the definition of cosine for the three right-angle triangles,
we find,
Vx=Vcos α, Vy=Vcos β, Vz=Vcos γ,
where V(short for |~
V|) is the magnitude of the vector ~
V. We also define unit vectors (vectors
of magnitude one) along each of the three coordinate axes x,yand zto be ˆ
i,ˆ
jand ˆ
krespectively
(figure 2). The following three vectors in the three coordinate directions can now be defined.
~
Vx=Vxˆ
i,~
Vy=Vyˆ
j,~
Vz=Vzˆ
k.
Using the triangle rule for vector addition twice, this gives,
~
V=~
Vx+~
Vy+~
Vz=Vxˆ
i+Vyˆ
j+Vzˆ
k.
This is known as the unit vector notation of a vector.
If the vector is restricted to the x-yplane, then γ= 90. This makes (figure 3),
Vz= 0,and α+β= 90.
Hence,
cos β= cos (90α) = sinα.
Thus the components Vxand Vycan now be written as,
Vx=Vcos α, Vy=Vsin α
1
pf3
pf4

Partial preview of the text

Download Unit Vector Notation and more Summaries Calculus in PDF only on Docsity!

Unit Vector Notation

1 Definitions

Figure 1 shows the definition of components of a vector

V. The angles α, β and γ are the angles

that the vector makes to the three coordinate axes x, y and z respectively. The dashed lines are

perpendiculars drawn from the tip of the vector to the three coordinate axis. The components

V

x

, V

y

and V

z

of

V are defined to be the segments of the coordinate axes marked out by these

perpendiculars as shown. Hence, using the definition of cosine for the three right-angle triangles,

we find,

V

x

= V cos α, V

y

= V cos β, V

z

= V cos γ,

where V (short for |

V|) is the magnitude of the vector

V. We also define unit vectors (vectors

of magnitude one) along each of the three coordinate axes x, y and z to be

i,

j and

k respectively

(figure 2). The following three vectors in the three coordinate directions can now be defined.

V

x

= V

x

i,

V

y

= V

y

j,

V

z

= V

z

k.

Using the triangle rule for vector addition twice, this gives,

V =

V

x

V

y

V

z

= V

x

i + V

y

j + V

z

k.

This is known as the unit vector notation of a vector.

If the vector is restricted to the x-y plane, then γ = 90

. This makes (figure 3),

V

z

= 0, and α + β = 90

Hence,

cos β = cos (

− α) = sin α.

Thus the components V

x

and V

y

can now be written as,

V

x

= V cos α, V

y

= V sin α

x

y

z

.

...

..

...

...

...

...

...

...

..

...

...

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

...

...

..

...

...

...

...

...

...

..

...

...

...

...

...

...

..

...

...

...

...

...

...

..

...

...

...

...

...

...

..

...

...

...

...

...

.. ... ... .. ... .. ... ..

. ... .... .... .... ...

~

V

V

x

V

y

V

z

α

β

γ

Figure 1: Components of a vector

~

V

x

y

z

...................................... .......... ......

..

..........

......

..

ˆ

i

..

..

...

..

..

...

..

...

..

...

..

...

..

...

.... ... .. ... ... ... .. .

.. ... .. ... ... ... .. .

ˆ

j

.. ... .... ... .... ... .... .... ... ..

...

...

...

...

..

...

.

.

....

.....

........

.

ˆ

k

Figure 2: Unit vectors

ˆ

i,

ˆ

j and

ˆ

k along the three coordinate directions.

x

y

.

...

....

...

....

...

....

...

....

....

...

....

...

....

...

....

...

....

...

....

....

...

....

...

....

...

....

...

....

...

....

....

...

....

...

....

...

....

...

....

...

....

....

...

....

...

....

...

....

...

....

...

....

....

...

....

...

...... ... ... .. ... ... ..

... ..... ...... .....

~

V

V

x

V

y

α

β

Figure 3: Components of a vector

~

V restricted to the x-y plane (β = 90

− α).

θ

(

~

A ×

~

B)

.

....

...

....

...

....

....

...

....

...

....

...

....

...

....

...

....

....

...

....

...

....

...

....

...

....

...

....

....

...

....

...

....

...

....

...

....

....

...

....

...

....

...

....

...

....

...

....

....

...

....

....... ..... ...... ....

... ... ... ... ... .. ..

~

B

.

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...... ... .. ... ... .. ...

... ... .. ... ... .. ...

~

A

...

...

....

........

................. ........ .... ... .. ... ... ..... .......... ..........

..........

.....

...

...

.. ... .... ....... .......

........

....

...

.

. ... .. ... ... .. ... .. ... .. ... ... .. ... ... .. ... ... .. ... ... ... ... .. ... ... ... ... ... ... .... ... ... ... ... .. ... ... .. ... ... .. ... .

. . .. .. ... ... ......

.

....

.....

.........

......... ....

...

..

...

..

...

..

...

..

...

..

...

...

..

...

...

..

...

...

...

.....

....

....

...

...

...

...

..

...

...

..

...

...

...

..

...

....

....... ..............................

.......

.....

....

...... ....... ......... .....................

......

....

...

..

..

..

.....

.........

.......

.......

.....

.....

....

.....

.....

.......... ............................ .................. .......................... ..... .... .... .... ... .... .... ... .... ... ... .... ... ... ... ... ... ... ... ... ... ... .. ... ... ... ... .. ... ... ... ... .... ... ... .... ... .. ... ... .. ... .. ... .. ... .. ... ... ... .. ... ... ... .. ... ... .. ... ... .. ... ... .. ... ... ... .. ... ... ... ... ... ... ... .. . .. .. . .. .. .. .. ... .. ... ... ... .... ..... ....

..

...

....

...

....

...

....

...

....

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

...

....

......... ..... ...... ...

.... ... ... .. ... ... .

~

B ..

...

..

...

..

...

..

..

...

..

...

..

...

..

...

..

...

..

...

..

.. .. ... ... .. ... ... ..

. .. ... ... .. ... ... ..

~

A

(

~

A ×

~

B)

thumb out of page

curled fingers

Figure 4: Finding the direction of the cross product

~

A ×

~

B using the right-hand-rule. Note that

the symbol means out of the page and ⊗ means into the page.

definition uses the so-called right-hand-rule. If you put the four fingers of the right hand

together and curl them along the angle θ going from the first vector of the product (

~

A in this

case) towards the second vector of the product (

~

B in this case), the direction in which the

thumb will stick out is the direction of the cross product (see figure 4).

To compute cross products of vectors given in a unit vector notation, it is useful to know the cross

products of the individual unit vectors

ˆ

i,

ˆ

j and

ˆ

k. From the above definition, it is straightforward

to see the following.

ˆ

i ×

ˆ

j = −

ˆ

j ×

ˆ

i =

ˆ

k,

ˆ

j ×

ˆ

k = −

ˆ

k ×

ˆ

j =

ˆ

i,

ˆ

k ×

ˆ

i = −

ˆ

i ×

ˆ

k =

ˆ

j. (2)

Also

ˆ

i ×

ˆ

i =

ˆ

j ×

ˆ

j =

ˆ

k ×

ˆ

k = 0. (3)

Note that the definition of the cross product requires a minimum of three dimensions. So,

drawing figures on a two-dimensional page becomes tricky. Hence, we shall often use a convention

for representing directions out of the page and into the page. The symbol means out of the page

and the symbol ⊗ means into the page. To remember these symbols, it is convenient to think of

them as the tip (point) and the tail (feathers) of an actual arrow.