


Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
This is known as the unit vector notation of a vector. If the vector is restricted to the x-y plane, then γ = 90◦. This makes (figure 3),. Vz = 0 ...
Typology: Summaries
1 / 4
This page cannot be seen from the preview
Don't miss anything!
x
y
z
.
...
..
...
...
...
...
...
...
..
...
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
...
..
...
...
...
...
...
...
..
...
...
...
...
...
...
..
...
...
...
...
...
...
..
...
...
...
...
...
...
..
...
...
...
...
...
.. ... ... .. ... .. ... ..
. ... .... .... .... ...
~
V
V
V
V
α
β
γ
Figure 1: Components of a vector
~
V
x
y
z
...................................... .......... ......
..
..........
......
..
ˆ
i
..
..
...
..
..
...
..
...
..
...
..
...
..
...
.... ... .. ... ... ... .. .
.. ... .. ... ... ... .. .
ˆ
j
.. ... .... ... .... ... .... .... ... ..
...
...
...
...
..
...
.
.
....
.....
........
.
ˆ
k
Figure 2: Unit vectors
ˆ
i,
ˆ
j and
ˆ
k along the three coordinate directions.
x
y
.
...
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
...
....
....
...
....
...
...... ... ... .. ... ... ..
... ..... ...... .....
~
V
V
V
α
β
Figure 3: Components of a vector
~
V restricted to the x-y plane (β = 90
− α).
θ
(
~
A ×
~
B)
.
....
...
....
...
....
....
...
....
...
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
...
....
....
...
....
....... ..... ...... ....
... ... ... ... ... .. ..
~
B
.
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...... ... .. ... ... .. ...
... ... .. ... ... .. ...
~
A
...
...
....
........
................. ........ .... ... .. ... ... ..... .......... ..........
..........
.....
...
...
.. ... .... ....... .......
........
....
...
.
. ... .. ... ... .. ... .. ... .. ... ... .. ... ... .. ... ... .. ... ... ... ... .. ... ... ... ... ... ... .... ... ... ... ... .. ... ... .. ... ... .. ... .
. . .. .. ... ... ......
.
....
.....
.........
......... ....
...
..
...
..
...
..
...
..
...
..
...
...
..
...
...
..
...
...
...
.....
....
....
...
...
...
...
..
...
...
..
...
...
...
..
...
....
....... ..............................
.......
.....
....
...... ....... ......... .....................
......
....
...
..
..
..
.....
.........
.......
.......
.....
.....
....
.....
.....
.......... ............................ .................. .......................... ..... .... .... .... ... .... .... ... .... ... ... .... ... ... ... ... ... ... ... ... ... ... .. ... ... ... ... .. ... ... ... ... .... ... ... .... ... .. ... ... .. ... .. ... .. ... .. ... ... ... .. ... ... ... .. ... ... .. ... ... .. ... ... .. ... ... ... .. ... ... ... ... ... ... ... .. . .. .. . .. .. .. .. ... .. ... ... ... .... ..... ....
..
...
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
......... ..... ...... ...
.... ... ... .. ... ... .
~
B ..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
...
..
.. .. ... ... .. ... ... ..
. .. ... ... .. ... ... ..
~
A
(
~
A ×
~
B)
thumb out of page
curled fingers
Figure 4: Finding the direction of the cross product
~
A ×
~
B using the right-hand-rule. Note that
the symbol means out of the page and ⊗ means into the page.
definition uses the so-called right-hand-rule. If you put the four fingers of the right hand
together and curl them along the angle θ going from the first vector of the product (
~
A in this
case) towards the second vector of the product (
~
B in this case), the direction in which the
thumb will stick out is the direction of the cross product (see figure 4).
To compute cross products of vectors given in a unit vector notation, it is useful to know the cross
products of the individual unit vectors
ˆ
i,
ˆ
j and
ˆ
k. From the above definition, it is straightforward
to see the following.
ˆ
i ×
ˆ
j = −
ˆ
j ×
ˆ
i =
ˆ
k,
ˆ
j ×
ˆ
k = −
ˆ
k ×
ˆ
j =
ˆ
i,
ˆ
k ×
ˆ
i = −
ˆ
i ×
ˆ
k =
ˆ
j. (2)
Also
ˆ
i ×
ˆ
i =
ˆ
j ×
ˆ
j =
ˆ
k ×
ˆ
k = 0. (3)
Note that the definition of the cross product requires a minimum of three dimensions. So,
drawing figures on a two-dimensional page becomes tricky. Hence, we shall often use a convention
for representing directions out of the page and into the page. The symbol means out of the page
and the symbol ⊗ means into the page. To remember these symbols, it is convenient to think of
them as the tip (point) and the tail (feathers) of an actual arrow.