Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Trigonometric Identites, Study notes of Calculus

Formulas for most calculus equations

Typology: Study notes

2019/2020

Uploaded on 10/19/2020

DesiH
DesiH 🇺🇸

1 document

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Trigonometric Identities
1) Reciprocal Identities
a.
csc u=1
sin usin u csc u=1
b.
secu=1
cos ucos u sec u=1
c.
cot u=1
tan utan u cot u=1
2) Quotient Identities
a.
tan u=sin u
cos u
b.
tan u=sec u
csc u
c.
cot u=cos u
sin u
d.
cot u=cscu
secu
3) Pythagorean Identities
a.
sin2u+cos2u=1
b.
1+tan
2
u=sec
2
u
c.
4) Odd and Even Function Identities
a.
sin
(
u
)
=−sin u
(
ODD
)
b.
cos
(
u
)
=cos u(EVEN )
c.
tan
(
u
)
=−tan u(ODD )
d.
csc
(
u
)
=−csc u(ODD )
e.
sec
(
u
)
=secu
(
EVEN
)
f.
cot
(
u
)
=−cot u(ODD)
5) Co- Function Identities
a.
sin
(
π
2u
)
=cos u
b.
cos
(
π
2u
)
=sin u
c.
tan
(
π
2u
)
=cot u
d.
cot
(
π
2u
)
=tan u
e.
sec
(
π
2u
)
=c s c u
f.
csc
(
π
2u
)
=secu
6) Composite Argument Identities
a.
sin
(
α+β
)
=sin α cos β+cos α sin β
b.
sin
(
αβ
)
=sin α cos βcos α sin β
c.
cos
(
α+β
)
=cos α cos βsin α sin β
d.
cos
(
αβ
)
=cos α cos β+sin α sin β
e.
tan
(
α+β
)
=tan α+tan β
1tan α tan β
f.
tan
(
αβ
)
=tan αtan β
1+tan α tan β
7) Double- Angle Argument identities
a.
sin
(
2u
)
=2 sin u cos u
b.
cos
(
2u
)
=cos
2
usin
2
u
c.
cos
(
2u
)
=12 sin
2
u
d.
cos
(
2u
)
=2cos
2
u1
e.
tan
(
2u
)
=2 tan u
1tan
2
u
8) Power Reducing Identities
pf2

Partial preview of the text

Download Trigonometric Identites and more Study notes Calculus in PDF only on Docsity!

Trigonometric Identities

  1. Reciprocal Identities a. csc u =

sin u ∨sin u ∙ csc u = 1 b. sec^ u =^

cos u ∨cos u ∙ sec u = 1 c. cot u =

tan u ∨tan u ∙ cot u = 1

  1. Quotient Identities a. tan u = sin u cos u b. tan u =^ sec u csc u c. cot u = cos u sin u d. cot u = csc u sec u
  2. Pythagorean Identities a. (^) sin^2 u +cos^2 u = 1 b. (^1) + tan^2 u = sec^2 u c. (^1) +cot^2 u = csc^2 u
  3. Odd and Even Function Identities a. sin (− u ) =−sin u ( ODD ) b. cos (− u )=cos u ( EVEN ) c. tan(− u )=−tan u ( ODD ) d. (^) csc (− u ) =− csc u ( ODD ) e. (^) sec (− u )= sec u ( EVEN ) f. cot (− u )=−cot u ( ODD )
  4. Co- Function Identities a. sin( π 2 − u ) =cos u b. cos^ ( π 2 − u ) =sin u c. tan( π 2 − u )=cot u d. cot^ ( π 2 − u ) =tan u e. sec (^) ( π 2 − u )= c s c u f. csc (^) ( π 2 − u )= secu
  5. Composite Argument Identities a. (^) sin ( α + β )=sin α ∙ cos β +cos α ∙ sin β b. sin ( αβ )=sin α ∙ cos β −cos α ∙ sin β c. cos ( α + β )=cos α ∙ cos β −sin α ∙ sin β d. cos ( αβ ) =cos α ∙ cos β +sin α ∙ sin β e. tan( α + β )= tan α +tan β 1 −tan α ∙ tan β f. tan(^ α −^ β )^ =^ tan α −tan β 1 + tan α ∙ tan β
  6. Double- Angle Argument identities a. sin ( 2 u )= 2 sin u ∙ cos u b. (^) cos ( (^2) u ) (^) =cos^2 u −sin^2 u c. (^) cos ( (^2) u ) (^) = 1 − 2 sin^2 u d. (^) cos ( (^2) u ) (^) = 2 cos^2 u − 1 e. tan(^2 u )^ =^ 2 tan u 1 −tan 2 u
  7. Power Reducing Identities

a. sin 2 u =

b. cos 2 u =

  1. Half- Angle Argument Identities

a. sin(

u )= ±

b. cos (

u )= ±

c. tan(

u )= ±

1 −cos u 1 +cos u

d. tan(

u )=

sin u 1 + cos u

e. tan(

u

1 −cos u sin u