






Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Trigonometric Formula Sheet Definition of the Trig Functions
Typology: Exams
1 / 12
This page cannot be seen from the preview
Don't miss anything!
2
(x, y)
y
θ
x
Right Triangle Definition
Assume that:
Unit Circle Definition
Assume θ can be any angle.
0 < θ <
π
or 0
◦
< θ < 90
◦
y
hypotenuse
θ
adjacent
opposite
x
sin θ =
opp
hyp
csc θ =
hyp
opp
sin θ =
y
csc θ =
y
cos θ =
adj
hyp
sec θ =
hyp
adj
cos θ =
x
sec θ =
x
tan θ =
opp
adj
cot θ =
adj
opp
tan θ =
y
x
cot θ =
x
y
sin θ, ∀ θ ∈ (−∞ , ∞)
cos θ, ∀ θ ∈ (−∞ , ∞)
csc θ, ∀ θ /= nπ, where n ∈ Z
sec θ, ∀ θ n +
π, where n ∈ Z
tan θ, ∀ θ
n +
π, where n ∈ Z
cot θ, ∀ θ nπ, where n ∈ Z
− 1 ≤ sin θ ≤ 1
− 1 ≤ cos θ ≤ 1
−∞ ≤ tan θ ≤ ∞
csc θ ≥ 1 and csc θ ≤
− 1 sec θ ≥ 1 and sec θ
−∞ ≤ cot θ ≤ ∞
The period of a function is the number, T, such that f ( θ +T ) = f ( θ ).
So, if ω is a fixed number and θ is any angle we have the following periods.
2 π sin( ωθ ) ⇒ T =
ω
2 π cos( ωθ ) ⇒ T =
ω
π
2 π csc( ωθ ) ⇒ T =
ω
2 π sec( ωθ ) ⇒ T =
ω
π
tan( ωθ ) ⇒ T =
ω
cot( ωθ ) ⇒ T =
ω
r
Identities and Formulas
Tangent and Cotangent Identities Half Angle Formulas
sin θ
tan θ =
cos θ
cos θ
cot θ =
sin θ
sin θ = ±
1 − cos(2 θ )
Reciprocal Identities
cos θ = ±
r
1 + cos(2 θ )
s
1 − cos(2 θ )
Pythagorean Identities
sin
2
θ + cos
2
θ =
1 tan
2
θ + 1 =
sec
2
θ 1 + cot
2
θ
= csc
2
θ
Even and Odd Formulas
Sum and Difference Formulas
sin( α ± β ) = sin α cos β ± cos α sin β
cos( α ± β ) = cos α cos β ∓ sin α sin β
tan( α β ) =
tan α ± tan β
1 ∓ tan α tan β
Product to Sum Formulas
sin(− θ ) = − sin θ
cos(− θ ) = cos θ
tan(− θ ) = − tan
θ
Periodic Formulas
If n is an integer
sin( θ + 2 πn ) = sin θ
cos( θ + 2 πn ) = cos θ
tan( θ + πn ) = tan θ
csc(− θ ) = − csc
θ sec(− θ ) = sec θ
cot(− θ ) = − cot
θ
csc( θ + 2 πn ) = csc θ
sec( θ + 2 πn ) = sec θ
cot( θ + πn ) = cot θ
sin α sin β =
[cos( α − β ) − cos( α + β )]
cos α cos β =
[cos( α − β ) + cos( α + β )]
sin α cos β =
[sin( α + β ) + sin( α − β )]
cos α sin β =
[sin( α + β ) − sin( α − β )]
Sum to Product Formulas
sin α + sin β = 2 sin
α + β
cos
α −
β
sin(2 θ ) = 2 sin θ cos θ
cos(2 θ ) = cos
2
θ − sin
2
θ
sin α − sin β = 2 cos
α + β
sin
α − β
cos α + cos β = 2 cos
α + β
cos
α − β
= 2 cos
2
θ −
= 1 − 2 sin
2
θ
2 tan θ
cos α − cos β = − 2
sin
α + β
sin
α − β
tan(2 θ ) =
1 − tan
2
θ
Degrees to Radians Formulas
If x is an angle in degrees and t is an angle in
radians then:
Cofunction Formulas
sin
π
− θ = cos θ
csc
π
− θ = sec θ
cos
π
− θ = sin θ
sec
π
− θ = csc θ
π t
πx
⇒ t =
◦
t
and x =
tan
π
− θ = cot
θ
tan θ =
1 + cos(2 θ )
Double Angle Formulas
◦
x
◦
π
sin θ =
csc θ
csc θ =
sin θ
cos θ =
sec θ
sec θ =
cos θ
tan θ =
cot θ
cot θ =
tan θ
13
√
90 ◦, π
2
22
13
√
√ 2 √ 2 √ 2 √ 2
120 ◦, 2 π
3
60 ◦, π
3
√
3 1
135 ◦, 3 π 45 ◦, π
22
4
4
22
150 ◦, 5 π
6
30 ◦, π
6
180 ◦, π
0 ◦, 2π
210 ◦, 7 π
6
330 ◦, 11 π
6
√ 3
1
√ 3
2 2
225 ◦, 5 π
4
315 ◦, 7 π
4
1
2 2
240 ◦, 4 π
3
300 ◦, 5 π
3
√ 2 √ 2
√ 2 √ 2
1
√ 3 √ 3
22
270 ◦, 3 π
1
2
2
2
Unit Circle
For any ordered pair on the unit circle ( x, y ) : cos θ = x and sin θ = y
Example
cos (
7 π
) = −
sin (
7 π
) = −
2
2
2
2
2
β
a c
γ
α
Inverse Trig Functions
Definition
θ = sin
− 1
( x ) is equivalent to x = sin θ
Inverse Properties
These properties hold for x in the domain and θ in
the range
θ = cos
− 1
( x ) is equivalent to x = cos θ
θ = tan
− 1
( x ) is equivalent to x = tan θ
Domain and Range
sin(sin
− 1
( x )) = x
cos(cos
− 1
( x )) = x
tan(tan
− 1
( x )) =
x
sin
− 1
(sin( θ )) = θ
cos
− 1
(cos( θ )) = θ
tan
− 1
(tan( θ )) = θ
Function
θ = sin
− 1
( x )
θ = cos
− 1
( x )
θ = tan
− 1
( x )
Domain
− 1 ≤ x ≤ 1
− 1 ≤ x ≤ 1
−∞ ≤ x ≤ ∞
Range
π π
≤ θ ≤
0 ≤ θ ≤
π π π
— < θ <
Other Notations
sin
− 1
( x ) = arcsin( x )
cos
− 1
( x ) = arccos( x )
tan
− 1
( x ) = arctan( x )
Law of Sines, Cosines, and Tangents
b
Law of Sines Law of Tangents
sin α sin β sin
γ
a − b
tan
1
( α − β )
a b
c
Law of Cosines
a +
b
b − c
tan
1
( α + β )
tan
1
( β − γ )
a
2
= b
2
2
− 2 bc cos
α
b + c
2
tan
1
( β + γ )
b
2
= a
2
2
− 2 ac cos
β
a − c
tan
1
( α − γ )
c
2
= a
2
2
− 2 ab cos γ
a + c
− a = i
a, a ≥ 0
i =
− 1 i
2
= − 1 i
3
= − i i
4
( a + bi )( a − bi ) = a
2
b
2
( a + bi ) + ( c + di ) = a + c + ( b +
d ) i ( a + bi ) − ( c + di ) = a − c + ( b −
d ) i ( a + bi )( c + di ) = ac − bd + ( ad +
bc ) i
| a + bi | =
a
2
2
Complex Modulus
( a + bi ) = a − bi Complex Conjugate
( a + bi )( a + bi ) = | a + bi |
2
Let z = r (cos θ + i sin θ ), and let n be a positive integer.
Then:
Example: Let z = 1 − i , find z
6
z
n
= r
n
(cos nθ + i sin nθ ).
Solution: First write z in polar form.
r =
2
2
θ = arg ( z ) = tan
− 1
π
Polar Form: z =
2 cos −
π
π
Applying DeMoivre’s Theorem gives :
z
6
6
cos 6 · −
π
π
3
cos −
3 π
3 π
= 8(0 + i (1))
= 8 i
n
− 1
θ = arg ( z ) = tan
4
4
4
4
◦
◦
◦
◦
Example: Find all the complex fourth roots of 4. That is, find all the complex solutions of
x
4
We are asked to find all complex fourth roots of 4.
These are all the solutions (including the complex values) of the equation x
4
For any positive integer n , a nonzero complex number z has exactly n distinct n th roots.
More specifically, if z is written in the trigonometric form r (cos θ + i sin θ ), the n th roots of
z are given by the following formula.
1
◦
◦
Remember from the previous example we need to write 4 in trigonometric form by using:
r = ( a )
2
2
and θ = arg ( z ) = tan
− 1
b
a
So we have the complex number a + ib = 4 + i 0.
Therefore a = 4 and b = 0
So r =
2
2
= 4 and
Finally our trigonometric form is 4 = 4(cos 0
◦
◦
Using the formula (∗) above with n = 4, we can find the fourth roots of 4(cos 0
◦
◦
For k = 0 , 4 cos + + i sin + =
2 (cos(
◦
) + i sin(
◦
For k = 1 , 4
1
cos
◦
◦
◦
◦
2 (cos(
◦
) + i sin(
◦
2 i
For k = 2 , 4
1
cos
◦
◦
◦
◦
2 (cos(
◦
) + i sin(
◦
For k = 3 , 4
1
cos
◦
◦
◦
◦
2 (cos(
◦
) + i sin(
◦
2 i
Thus all of the complex roots of x
4
= 4 are:
2i , −
2i.
2
2
2
2
2
2
2
2
2
2
2
2
2
f (x) = sin(x)
1
√ 3
2
√ 2
2
1
2
0 πππ
643
π
2
2π3π5π
3 4 6
π
7π5π4π
64 3
3π
2
5π7π 11π
3 4 6
2π
−
1
2
— 2
√ 2
— 2
-
√ 3
Example : sin
5π
√
4
= −
2
2
f (x) = cos(x)
1
√ 3
2
√ 2
2
1
2
0 πππ
643
π
2
2π3π5π
346
π
7π5π4π
643
3π
2
5π7π 11π
346
2π
−
1
2
— 2
√ 2
— 2
-
√ 3
Example : cos
7π
√
6
= −
3
2
f ( x )
x
f ( x )
x