Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Tổng hợp công thức toán cao cấp, Schemes and Mind Maps of Economics

Tổng hợp và tóm tắt công thức toán cao cấp

Typology: Schemes and Mind Maps

2021/2022

Uploaded on 06/06/2023

stella-ikz
stella-ikz 🇻🇳

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Hμm mét biÕn
1. C«ng thøc tÝnh ®¹o hµm
(u
α
)’ =
α
.u’.u
α
-1 (
α
: H»ng sè, U: Hµm
sè)
(aU)’ = u’.ln a.aU (a: H»ng sè, U: Hµm
sè)
(eU)’ = u’.eU
(Sin u)’ = u’.cos u
Cos u)’ = - u’.sin u
(Tg u)’= uCos
u
2
' ;
(Cotg u)’= uSin
u
2
'
(Logau)’ = au
u
ln.
'
(arcsin u)’ = 2
1
'
u
u
;
(arccos u)’ = 2
1
'
u
u
(arctg u)’ = 2
1
'
u
u
+ ;
(arccotg u)’ = 2
1
'
u
u
+
(u ± v)’=u’ ± v’
(u.v)’= u’v+v’u
(v
u)’ = 2
''
v
uvvu
2. Vi ph©n du = u’.dx
3. Giíi h¹n
- V« cïng bÐ t¬ng ®¬ng :
0)( =
xLim
ax
α
=> α(x) ®îcgäi lµ v« cïng bÐ khi x->a
1
)(
)( =
x
x
Lim
ax
β
α
--> α(x) vµ β(x) lµ hai v« cïng bÐ t¬ng ®¬ng khi x->a
hiÖu : α(x) ∼β(x) khi x->a
§Þnh lý : NÕu α(x) ∼α1(x) vµ β (x) ∼β1(x)khi x->a th× )(
)(
)(
)(
1
1
x
x
Lim
x
x
Lim axax
β
α
β
α
=
Sin x x khi x->0
ArcSin x x khi x->0
Tg x x khi x->0
ArcTg x x khi x->0
ex-1 x khi x->0
ln(1+x) x khi x->0
- C«ng thøc Lopital khö d¹ng 0
0;
:
1
)('
)('
)(
)(
xg
xf
Lim
xg
xf
Lim axax =
4. TÝnh liªn tôc cña hµm sè
Hµm sè: y = f(x) liªn tôc t¹i x = x0 nÕu : + f(x0) x¸c ®Þnh vµ h÷u h¹n
+ )()( 0
0
xfxfLim
xx
=
(NÕu hµm sè kh«ng liªn tôc t¹i x0 th× x0 ®c gäi lµ ®iÓm gi¸m ®o¹n)
Hµm sè s¬ cÊp y = f(x) sÏ liªn tôc t¹i mäi ®iÓm mµ hµm sè x¸c ®Þnh
5. TÝch ph©n
a. C«ng thøc nguyªn hµm
Cxdxx +
+
=+
1
.
)1(
1
αα
α
(
α
>0)
Ca
a
dxa xx +=
.
ln
1
Cedxe xx +=
Cxdxx +=
cos.sin
=dx
x.
sin
1
2-cotg x + C
Cxdxx +=
sin.cos
=dx
x.
cos
1
2 tg u + C
C
a
x
dx
xa
+=
arcsin.
1
22
+dx
xa .
1
22 =a
1.arctg a
x +C
Cxdx
x+=
ln.
1
pf3
pf4
pf5

Partial preview of the text

Download Tổng hợp công thức toán cao cấp and more Schemes and Mind Maps Economics in PDF only on Docsity!

Hμm mét biÕn

1. C«ng thøc tÝnh ®¹o hμm

• (u

α

)’ = α .u’.u

α -

( α : H»ng sè, U: Hμm

sè)

• (a

U

)’ = u’. ln a.a

U

(a: H»ng sè, U: Hμm

sè)

• (e

U

)’ = u’.e

U

• (Sin u)’ = u’.cos u

• Cos u)’ = - u’.sin u

• (Tg u)’=

Cosu

u 2

• (Cotg u)’=

Sinu

u 2

• (Logau)’ =

u a

u

. ln

• (arcsin u)’ =

2 1

u

u

• (arccos u)’ =

2 1

u

u

• (arctg u)’ = 2

u

u

• (arccotg u)’ = 2

u

u

• (u ± v)’=u’ ± v’

• (u.v)’= u’v+v’u

v

u

v

u v−vu

2. Vi ph©n du = u’.dx

3. Giíi h¹n

- V« cïng bÐ t−¬ng ®−¬ng :

Lim x x a

α => α(x) ®−îcgäi lμ v« cïng bÐ khi x->a

→ (^) x

x Lim

x a β

--> α(x) vμ β(x) lμ hai v« cïng bÐ t−¬ng ®−¬ng khi x->a

Ký hiÖu : α(x) ∼β(x) khi x->a

§Þnh lý : NÕu α(x) ∼α 1 (x) vμ β (x) ∼β 1 (x)khi x->a th×

1

1

x

x Lim x

x Lim

x a x a β

→ →

ƒ Sin x ∼ x khi x->

ƒ ArcSin x ∼ x khi x->

ƒ Tg x ∼ x khi x->

ƒ ArcTg x ∼ x khi x->

ƒ e

x

-1 ∼ x khi x->

ƒ ln(1+x) ∼ x khi x->

- C«ng thøc Lopital khö d¹ng

g x

f x Lim g x

f x Lim x →a x→a

4. TÝnh liªn tôc cña hμm sè

Hμm sè: y = f(x) liªn tôc t¹i x = x 0 nÕu : + f(x 0 ) x¸c ®Þnh vμ h÷u h¹n

0

Limf x f x x x

(NÕu hμm sè kh«ng liªn tôc t¹i x 0 th× x 0 ®c gäi lμ ®iÓm gi¸m ®o¹n)

Hμm sè s¬ cÊp y = f(x) sÏ liªn tôc t¹i mäi ®iÓm mμ hμm sè x¸c ®Þnh

5. TÝch ph©n

a. C«ng thøc nguyªn hμm

• x dx x +C

1 . ( 1 )

α 1 α

α

• a C

a

a dx

x x

ln

• e dx e C

x x

• ∫ sinx .dx=cosx+C

• ∫ dx=

x

sin

2 - cotg^ x^ + C

• ∫ cosx .dx=−sinx+C

• ∫ dx=

x

cos

2 tg^ u^ + C

• C

a

x dx a x

∫. arcsin

2 2

dx a x

2 2 =^

a

. arctg

a

x

+C

• dx x C

x

∫. =ln +

b. TÝch ph©n tõng phÇn: ∫ u .dv= u.v−∫vdu

Hμm nhiÒu biÕn

7. §¹o hμm riªng vμ vi ph©n toμn phÇn

x

f x x y f x y Lim x

f x y f x y x (^) x Δ

Δ→

0 0 0 0 0

0 0 0 0

'

y

f x y y f x y Lim y

f x y f x y y (^) y Δ

Δ→

0 0 0 0 0

0 0 0 0

'

• Vi ph©n toμn phÇn cÊp 1: df (x ,y) fx (x,y)dx fy(x,y)dy

' ' = +

• Vi ph©n toμn phÇn cÊp 2:

2 2 2 2 2 2 d f( x,y)=fxx (x,y)dx + 2 fxy(x,y)dxdy+fyy(x,y)dy

• C«ng thøc tÝnh gÇn ®óng: f(x+Δx, y+Δy) = f(x,y) + fx’(x,y). Δx + fy’(x,y). Δy

• §¹o hμm cña hμm hîp: F(u,v), trong ®ã u =u(x,y); v=v(x,y) :

y

v

v

F

y

u

u

F

y

F

x

v

v

F

x

u

u

F

x

F

• §¹o hμm cña hμm Èn :

*NÕu F(x,y) = 0 ; y= y(x): =>

'

F x y

F x y y x y

x = −

*NÕu F(x,y,z) = 0 ; z= z(x,y): =>

'

F x y z

F x y z z x x

x

'

F x y z

F x y z z y y

x = −

8. Cù trÞ hμm nhiÒu biÕn

B−íc1: T×m ®iÓm c¸c ®iÓm dõng M(xi,yi) lμ nghiÖm cña hÖ PT:

'

'

f x y

f x y

y

x

B−íc2: KiÓm tra ®iÓm M(xi,yi) cã lμ cùc trÞ

A=fxx”(xi,yi); B=fxy”(xi,yi); C=fyy”(xi,yi);

B

2

-AC < 0

A<0: M(xi,yi)--- Cùc ®¹i

A>0: M(xi,yi)--- Cùc tiÓu

B

2

-AC > 0 M(xi,yi)--- kh«ng lμ cùc trÞ

B

2

-AC = 0 M(xi,yi)--- Ch−a kÕt luËn ®−îc

Cùc trÞ cã ®iÒu kiÖn: T×m cùc trÞ hμm: u=f(x,y,z) víi ®k: g(x,y,z)=

Gi¶i hÖ PT:

'

'

'

'

'

'

g x y z

g

f

g

f

g

f

z

z

y

y

x

x

=> NghiÖm M(x,y,z)

9. TÝch ph©n kÐp

a. Trong hÖ täa ®é ®Ò c¸c:

- NÕu miÒn D lμ h×nh ch÷ nhËt x¸c ®Þnh bëi: a ≤ x ≤b vμ c ≤ y ≤d th×:

d

c

b

D a

f (x,y)dxdy dx f(x,y)dy

- NÕu miÒn D lμ h×nh ch÷ nhËt x¸c ®Þnh bëi: a ≤ x ≤b vμ y 1 (x) ≤ y ≤y 2 (x) th×:

( )

()

2

1

y x

y x

b

D a

f x y dxdy dx f x ydy

Ph−¬ng tr×nh vi ph©n

12. Ph−¬ng tr×nh vi ph©n cÊp 1: F(x,y,y’) = 0 hoÆc y’= f(x,y)

(1) Ph−¬ng tr×nh ph©n ly:

f x y g y

dy f x

dx g y

= ⇔ f ( )x dx + g y dy( ) = 0

- TÝch ph©n 2 vÕ: ∫ f ( )x dx +∫ f ( y dy) = C⇔ F(x)+ G(x) = C

(2) Ph−¬ng tr×nh ®¼ng cÊp: '

y y f x

- §Æt u(x) =

y

x

⇒ y = u(x).x ⇒ y’= u(x)+ u’(x).x Thay vμo PT ta cã:

u+u’.x= f(u) ⇔ x.u’ = f(u) – u hay. ( )

du x f u u dx

* NÕu f(u) – u = 0: x.u’= 0 ⇒ u’= 0 ⇒ u= C ⇒ y = C.x - lμ 1 hä nghiÖm

* NÕu f(u) – u ≠ 0:

dx du

x f u u

(®©y lμ mét PT ph©n ly). TÝch ph©n hai vÕ :

dx du

x f u u

∫ ∫ ⇒^ ln |^ x^ |^ =^ φ( )u^ +^ ln |^ C|⇒^

( ) .

y

x C e^ x

φ

( Φ (u) lμ mét nguyªn hμm cña

f ( )u − u

(3) Ph−¬ng tr×nh tuyÕn tÝnh: y’+p(x).y=q(x)

Ph−¬ng tr×nh thuÇn nhÊt: y’+p(x).y=

C«ng thøc nghiÖm tæng qu¸t:

( ) ( ) .( ( ). )

P x dx P x dx y e C Q x e dx

(4) Ph−¬ng tr×nh Becnuly: y ' p x( ). y q x( ). y

α

(Ph−¬ng ph¸p gi¶i: ®−a vÒ ph−¬ng tr×nh tuyÕn tÝnh)

• α>0: y= 0 lμ 1 nghiÖm cña ph−¬ng tr×nh

• Víi y ≠ 0 chia c¶ 2 vÕ cho y

α

vμ ®Æt z(x) = y

1-α^

⇒ z’(x) = (1-α).y’.y

α

thay vμo PT

z'+(1-α).p(x).z=(1-α).q(x) --- Lμ mét ph−¬ng tr×nh vi ph©n tuyÕn tÝnh

(5) Ph−¬ng tr×nh vi ph©n toμn phÇn: P(x,y)dx + Q(x,y)dy = 0 (trong ®ã:

P Q

y x

NghiÖm tæng qu¸t:

0 0

x y

x y

u x y = ∫ P x y dx + ∫Q x y dy =C

Hay :

0 0

x y

x y

u x y = ∫ P x y dx + ∫Q x y dy =C

( trong ®ã (x 0 ,y 0 ) bÊt kú ∈ D ). §Ó ®¬n gi¶n chän x 0 = 0, y 0 = 0, nÕu (0,0) ∈ D

* Trong tr−êng hîp

P Q

y x

®−a vÒ ph−¬ng tr×nh vi ph©n toμn phÇn b»ng c¸ch

nh©n hai vÕ víi μ (x,y): μ(x,y). P(x,y)dx + μ(x,y). Q(x,y)dy = 0.

- NÕu ( )

P Q

y x x Q

= th×

( ). ( , ) ( )

x dx x y x e

ϕ

- NÕu ( )

P Q

y x y P

ϕ

= th×

( ). ( , ) ( )

y dy x y y e

ϕ μ μ

13. Ph−¬ng tr×nh vi ph©n cÊp 2: F(x,y,y’,y’’) = 0 hoÆc y’= f(x,y,y’)

(1) Ph−¬ng tr×nh khuyÕt (ph−¬ng ph¸p gi¶i: H¹ cÊp => ph−¬ng tr×nh vi ph©n cÊp 1):

• KhuyÕt y vμ y’: f(x,y’’) = 0 hay y’’= f(x) -> tÝch ph©n 2 lÇn

NghiÖm tæng qu¸t: y = ∫ ( ∫f ( ).x dx dx ) + C x 1 +C 2

• KhuyÕt y: f(x,y’,y’’) = 0. §Æt z(x) = y’ ⇒ y’’ = z’(x).

Ph−¬ng tr×nh trë thμnh: f(x,z,z’) = 0 => PTVP cÊp 1 víi z(x)

• KhuyÕt x: f(y,y’,y’’) = 0. §Æt z(y) = y’ =>

dy dz y dz dy dz dz y y dx dx dy dx dy dy

= = = = = z

Ph−¬ng tr×nh trë thμnh: ( , ,. ) 0

dz f y z z dy

= => PTVP cÊp 1 víi z(y)

(2) Ph−¬ng tr×nh vi ph©n tuyÕn tÝnh cÊp 2 cã hÖ sè h»ng :

a.y’’+b.y’+c.y= f(x) (1) ( Trong ®ã a,b,c lμ c¸c h»ng sè)

PT thuÇn nhÊt: a.y’’+b.y’+c.y= 0 (2)

NghiÖm tæng qu¸t cña (1) lμ: y = y + y* trong ®ã : y* - lμ nghiÖm riªng cña (1)

y - lμ nghiÖm TQ cña (2)

B−íc 1 : T×m nghiÖm tæng qu¸t cña PTTN(2)

Ph−¬ng tr×nh thuÇn nhÊt : a.y’’+b.y’+c.y= 0 (2)

NghiÖm TQ: y= C 1 .y 1 (x)+ C 2 .y 2 (x) (C 1 , C 2 : H.sè)

PT ®Æc tr−ng : a.k

2

+ b.k+ c = 0 (3)

Δ=b

2

- 4ac

PT (3) cã 2 n

o

: k 1 , k 2

k x y x =e

k x y x =e

y = C 1 .e

k1.x

+ C 2 .e

k2.x

PT (3) cã n

o

kÐp: k 1 = k 2 =k

kx y x =e

kx y x =x e

y = C 1 .e

k.x

+ C 2 .x.e

k.x

PT (3) cã 2 n

o

phøc: k1,2= α ± β.i

+ 1 ( ) .cos

x y x e x

α

+ 1 ( ) .sin

x y x e x

α

y = e

α.x

(C 1 .cosβx+ C 2 .sinβx)

B−íc 2 : T×m nghiÖm riªng cña PTKTN(1)

Ph−¬ng tr×nh vi ph©n tuyÕn tÝnh: a.y’’+b.y’+c.y= f(x) (1) ( Trong ®ã a,b,c lμ c¸c h»ng sè)

T×m nghiÖm riªng : y*

Ph−¬ng ph¸p biÕn thiªn h»ng sè

Lagrange

NghiÖm riªng cña (1) cã d¹ng:

y*= C 1 (x).y 1 (x)+ C 2 (x).y 2 (x)

( y 1 (x), y 2 (x) lμ 2 nghiÖm riªng ®éc lËp

cña PT thuÇn nhÊt (2) ë trªn )

Trong ®ã C 1 (x), C 2 (x) lμ c¸c hμm tho¶

m·n hÖ:

' ' 1 1 2 2 ' ' ' ' 1 1 2 2

C x y x C x y x

C x y x C x y x f x

⎪⎩ +^ =

C¨n cø d¹ng ®Æc biÖt cña vÕ tr¸i

D¹ng 1 : f(x)=Pn(x).e

α x

(Pn(x) lμ ®a thøc bËc n)

XÐt: α D¹ng cÇn tÝnh cña nghiÖm riªng

Ko lμ n

o

cña

PT§T(3)

y* = Qn(x). e

α x

( Qn(x) cïng bËc víi Pn(x) )

L lμ n

o

®¬n

cña PT§T(3)

y* = x.Qn(x). e

α x

L lμ n

o

kÐp

cña PT§T(3)

y* = x

2

. Qn(x). e

α x

D¹ng 2 : f(x)=e

α x

.(Pn(x).cos β x+Qm(x).sin β x)

XÐt: α±β.i D¹ng cÇn tÝnh cña nghiÖm riªng

Ko lμ n

o

cña

PT§T(3)

y*= e

α x

.(Kt(x).cos β x+Qt(x).sin β x)

(t=max(m,n))

Lμ n

o

cña

PT§T(3)

y*=x.e

α x

.(Kt(x).cos β x+Qt(x).sin β x)

(t=max(m,n))