Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

The Inverse geodetic Problem Using the Gauss Mid-Latitude Method | SURE 452, Study notes of Engineering

Material Type: Notes; Class: Geodesy 1; Subject: Surveying Engineering; University: Ferris State University; Term: Unknown 1989;

Typology: Study notes

Pre 2010

Uploaded on 08/07/2009

koofers-user-6n4
koofers-user-6n4 🇺🇸

4

(1)

10 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
φA37.39155571:= λA43.55306630:=
pifφA0<1, 1,
()
:= lifλA0<1, 1,
()
:=
φ1p radians φA
()
:= λ1l radians λA
()
:=
φB37.570912874:= λB44.252481672:=
pifφB0<1, 1,
()
:= lifλB0<1, 1,
()
:=
φ2p radians φB
()
:= λ2l radians λB
()
:=
-----------------------------------------------------------------------------------------------------------------------------------------
-
Inverse Problem:
The mean latitude:
φm
φ1φ2
+
2
:= φmr2d37.80342859=
The Inverse Geodetic Problem Using the Gauss Mid-Latitude
Method
Some useful angle functions:
dd ang( ) degree floor ang 0.0000000001+()
mins ang degree( ) 100.0
minutes floor mins 0.000000001+()
seconds mins minutes( ) 100.0
degree minutes
60.0
+seconds
3600.0
+
:= radians ang( ) d dd ang()
dπ
180.0
:=
dms ang( ) degree floor ang()
rem ang degree()60
mins floor rem()
rem1 rem mins()
secs rem1 60.0
degree mins
100
+secs
10000
+
:=
r2d 180.0
π
:=
-----------------------------------------------------------------------------------------------------------------------------------------
-
The following data refer to a given reference system
a 6378160 m:= f1
298.257222028
:= baaf:=
b 6356775.23702048 m=
first eccentricity squared: e2a2b2
a2
:= e20.006694380024537=
-----------------------------------------------------------------------------------------------------------------------------------------
-
Given data:
pf3

Partial preview of the text

Download The Inverse geodetic Problem Using the Gauss Mid-Latitude Method | SURE 452 and more Study notes Engineering in PDF only on Docsity!

φ A

:= −37.39155571 λ A

p if φ A

:= l if λ A

φ 1

p radians φ A

:= ⋅ λ 1

l radians λ A

φ B

:= −37.570912874 λ B

p if φ B

:= l if λ B

φ 2

p radians φ B

:= ⋅ λ 2

l radians λ B

Inverse Problem:

The mean latitude:

φ m

φ 1

φ 2

:= φ m

⋅r2d =−37.

The Inverse Geodetic Problem Using the Gauss Mid-Latitude

Method

Some useful angle functions:

dd ang( ) degree ←floor ang( +0.0000000001)

mins ←(ang −degree) 100.0⋅

minutes ←floor mins( +0.000000001)

seconds ←(mins −minutes) 100.0⋅

degree

minutes

seconds

:= radians ang( ) d ←dd ang( )

d

π

dms ang( ) degree ←floor ang( )

rem ←(ang −degree) 60⋅

mins ←floor rem( )

rem1 ←( rem −mins)

secs ←rem1 60.0⋅

degree

mins

secs

r2d

π

The following data refer to a given reference system

a := 6378160 m⋅ f

:= b :=a −a f⋅

b =6356775.23702048 m

first eccentricity squared: (^) e 2

a

2 b

2 −

a

2

e 2

Given data:

Gauss Mid-Latitude Method - Inverse

Problem

Page 2 of 3

s i

s =54971.99248763 m i

X

2 X 2

2 := +

X

X =−33099.40217128 m 2

∆φ p

cos

∆λ

B

m

X

X =43890.19860931 m 1

∆λ p

cos φ m

A

m

∆λ p

∆λ ⋅ r2d=0. p

∆λ

sin

∆λ

∆λ

2

∆φ p

∆φ ⋅r2d =−0. p

∆φ

sin

∆φ

∆φ

2

∆A ∆λ dms (∆^ A r2d⋅ )^ =−0.

sin φ m

cos

∆φ

F ∆λ

3

F F =−0.

sin φ

( m)

⋅ cos φ

( ( m))

2 := ⋅

B

m

m

B =

m

M

m

M

m

M =6359439.64734370 m m

a 1 e 2

W

m

3

A

m

m

A =

m

N

m

N

m

N =6386196.22720554 m m

a

W

m

W

m

W =0.

m

1 e 2

sin φ

( ( m))

2 := − ⋅

∆φ φ ∆φ ⋅ r2d=−0. 2

φ 1

∆λ λ ∆λ ⋅ r2d=0. 2

λ 1

The difference in longitude and latitude: