Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Test 1 with Answer Key - Electricity, Magnetism and Light | PHYS 241, Exams of Physics

Material Type: Exam; Professor: Cattell; Class: Elec Magnetism & Light; Subject: Physics; University: Community College of Philadelphia; Term: Fall 2018;

Typology: Exams

2017/2018

Uploaded on 12/17/2018

koofers-user-tvb
koofers-user-tvb 🇺🇸

10 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
PHYS 241-1 Test 1 Key 9/20/18 p. 1
1. First make a sketch showing the electric fields at the origin that are due to the source charges.
(See Figure 1.)
a.
2
2
2
2
1
12
01
6
95
N m N
1
2C
C
2
22
02
6
95
N m N
2
2C
C
1
4
3.00 10 C
9 10 ; 1.08 10
0.500 m
1
4
3.00 10 C
9 10 ; 1.08 10
0.500 m
q
Er
E
q
Er
E


Rx 2
5
4N
C
0 cos 210
3
1.08 10 2
9.35 10
EE
Ry 1 2
55
4N
C
sin 210
1
1.08 10 1.08 10 2
5.40 10
E E E

44
N
C
ˆˆ
9.35 10 5.40 10 (20 points)E ij
b.
6 4 4 N
C
22
22
22
2
ˆˆ
0.200 10 C 9.35 10 5.40 10
ˆˆ
1.87 10 1.08 10 N
1.87 10 1.08 10 N
2.16 10 N or 21.6 mN
F qE
F
FF


ij
ij
2
2
F
1.08 10
arctan 1.87 10
30.0 below the + axis 330x or


 

c.
44
N
C
44
44
ˆ ˆ ˆ ˆ
: 1.50 3.00 C m 9.35 10 5.40 10
ˆˆ
ˆ
ˆ
1.50 3.00 0 m N; 1.50 5.40 10 3.00 9.35 10 m N
9.35 10 5.40 10 0
ˆ
0.200 m N (20 points)
pE


i j i j
i j k
k
k
Continued on the other side
0.500 m
x
y
Figure 1
q1
q2
E
30
30
2
E
1
E
Figure 2
x
y
q1
q2
F = 330
q
E
F
pf3

Partial preview of the text

Download Test 1 with Answer Key - Electricity, Magnetism and Light | PHYS 241 and more Exams Physics in PDF only on Docsity!

  1. First make a sketch showing the electric fields at the origin that are due to the source charges.

(See Figure 1.)

a.

2 2

2 2

1 (^1 ) 0 1

6 (^9) N m 5 N C^2 1 C

2 (^2 ) 0 2

6 (^9) N m 5 N

C^2 2 C

3.00 10 C

0.500 m

3.00 10 C

0.500 m

q E r E q E r E

 

 

Rx 2

5

(^4) N C

0 cos 210

E   E 

Ry 1 2

5 5

(^4) N C

sin 210

E  E  E 

(^4 4) N C

E  9.35  10 ˆ i^  5.40  10 ˆ j (20 points)

b.

(^6 4 4) N C

2 2

2 2 2 2

2

0.200 10 C 9.35 10 ˆ^ 5.40 10 ˆ
1.87 10 ˆ^ 1.08 10 ˆN
1.87 10 1.08 10 N

2.16 10 N or 21.6 mN

F qE

F
F F

 

 

i j

i j

2

2

F

arctan 1.87 10

30.0 below the + x axis or 330

c.

(^4 4) N C

4 4

4 4

: 1.50 3.00 C m 9.35 10 5.40 10

1.50 3.00 0 m N; 1.50 5.40 10 3.00 9.35 10 m N

0.200 m N (20 points)

  pE           

       ^        

i j i j

i j k

k

k

Continued on the other side

(20 points)

0.500 m

x

y

Figure 1

q 1

E q 2

30 

30 

E 2
E 1

Figure 2

x

y

q 1

q 2

F = 330

q

E
F

x

x

y

P

x 1 - x

x x 1

Charge  q =  x

lies in this interval.

Uniform charge

per unit length .

- L

Figure 4

Flux through S:

S 1 2 3

d   d   d   d

E A E A E A E A

From symmetry E is directed radially away from the line of charge and has a constant magnitude over the

lateral side of S (side 3).

Over the sides 1 and 2 of S E and d A are perpendicular:

1 2

d  0;  d  0

E A E A.

Over side 3 of S E and d A are parallel and E has constant magnitude E :

3 3

3 S

A

A 2 Thus 0 0 2

d Ed

E d E rL d E rL

E A
E A

Gauss' Law:  

S^0 0

so 2 = and. 2

q L d q L E rL E r

E A (20 points)

  1. a.

   

 

 

 

 

2 1 0

0

(^2) L 2 (^0 1 )

0

0 1 0 1 1 L

1 1

0 1 1

0 1 1

4 4 L

L

4 L

1 L

4 L

dq

dE dq dx r x x

r

dx dx

dE E

x x x x

E E

x x x x

x x

E

x x

E

x x

 ^ ^  ^ 

 ^ ^  

Continued on the next page

(12 points)

2 1

1

1 2 2 2 2 1

2

1 1

: For let then and

(We may leave out the " " (why?))

dx Note u x x du dx

x x

dx du du u u du

x x u^ u^ u

dx C

x x x^ x

 

Infinite line of charge

with uniform linear

charge density .

Gaussian surface S in the form of a

right circular cylinder of radius r and

length L coaxial with the line of charge.

L

r

E From symmetry the electric field is directed radially away from

the line of charge.

2 1 3

d A

d A d A

Figure 3