Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Temperature Independent Biasing - Lecture Notes | ECE 4430, Study notes of Electrical and Electronics Engineering

Material Type: Notes; Class: Analog Integra Circuits; Subject: Electrical & Computer Engr; University: Georgia Institute of Technology-Main Campus; Term: Summer 2000;

Typology: Study notes

Pre 2010

Uploaded on 08/05/2009

koofers-user-7je-2
koofers-user-7je-2 🇺🇸

10 documents

1 / 23

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Temp. Indep. Biasing (7/14/00) Page 1
ECE 4430 - Analog Integrated Circuits and Systems P.E. Allen, 2000
4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)
INTRODUCTION
Objective
The objective of this presentation is:
1.) Introduce the concept of a bandgap reference
2.) Show circuits that implement the bandgap reference
3.) Show how to improve the performance of the bandgap reference
Outline
• Introduction
• Development of the bandgap circuit
• Bandgap reference circuits
• Improved bandgap reference circuits
• Summary
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17

Partial preview of the text

Download Temperature Independent Biasing - Lecture Notes | ECE 4430 and more Study notes Electrical and Electronics Engineering in PDF only on Docsity!

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)INTRODUCTIONObjective The objective of this presentation is:1.) Introduce the concept of a bandgap reference2.) Show circuits that implement the bandgap reference3.) Show how to improve the performance of the bandgap reference Outline • Introduction• Development of the bandgap circuit• Bandgap reference circuits• Improved bandgap reference circuits• Summary

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

Temperature Stable References •^ The previous reference circuits failed to provide small values of temperature coefficient although sufficientpower supply independence was achieved.•^ This section introduces the bandgap voltage concept combined with power supply independence to create a verystable voltage reference in regard to both temperature and power supply variations.Bandgap Voltage Reference PrincipleThe principle of the bandgap voltage reference is to balance the negative temperature coefficient of a pnjunction with the positive temperature coefficient of the thermal voltage,

V =^ kT/q. t^

Concept:^ VDD

VBE^ -2mV/°C I 1^ T V =^ V^ +^ KV^ REF^ BE^ t +^ Σ V^ VtBE -^ +0.085mV/°C KVt^ T kTV = (^) t Kq^ Fig. 4.6-

Result: References with^ TC ’s approaching 10 ppm/°C. F

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

Derivation of the Temperature Coefficient of the Base-Emitter Voltage - Continued 2.) Combine the above relationships into one:q DnV- VBE^ GO^3 J^ =DTexp= ATC^ NWVAB^ t^ 

V- VBE^ GOγ expVt

where,^ γ^ = 33.) The value of J^ at a reference temperature of T = TC^

is 0 qγ J = ATexp (V- V)C0 0 BE GOkT 0 

while the value of J^ at a general temperature, T, isC^ qγ^ J^ = ATexp^ (V- V)C^ BE^ GOkT  4.) The ratio of J^ /J^ can be expressed as,C^ C0^ J^ T^ γ^ C=^ exp^ J^ TC0^0 

V- VV- VqBE G0BE0 G0- k T T 0 

orJ^ CTqln^ =^ γ^ ln+ J^ TkT^ C0^0 

T V- V- (V- V)BE GO BE0 GOT 0 

where Vis the value of Vat T = TBE0^ BE^ 0. 5.) Solving for V^ from the above results gives,BE^ TTγkTV(T) = V^ 1 - + V+^ BEGOBE0TTq^0 0 

TJ^ kT^0 Cln+ lnT^ q J^ C0

Temp. Indep. Biasing (7/14/00)^

Page 5

ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

Derivation of the Temperature Coefficient of the Base-Emitter Voltage - Continued α^ 6.) Next, assume J^ ∝ Τ^ and find^ ∂V/∂T.C^ BE VVVVTγkTBEGOGOBE0=^ 1- - + +^ TTTq^ T^ T^0 0 0 

ln(TT(γkT/q)kT0/T)^0 · + ln+ Tq^ T T^ 

ln(J /J )J^ kC C0C+ lnq J^ Τ C0

7.) Assume that T = Twhich means J^ = J^. Since,^0 C^ C

∂V/∂T = 0,GOVVVln(Tln(J^ /J^ )γkTkTBEGOBE00/T)C^ C0|= - + + · + T=T 0 TTq q^ TT Τ 0 0 

8.) Note that,ln(T(T-T0/T)T0/T)T^0 -1= = = and^2 TTT^ T^ T^ T^00 

ln(J^ /J^ J^ (J^ /J^ J^ J^ C^ C0)C0C^ C0)C0αC =^ = =J^ J^ TJ^ Τ^ T^ CC^ C0^ 

α T

Therefore,VVVBEGOBE0γkαk|= - + -^ +^ T=T^0 TTq^ q^ T^0

VV- VBEBE0^ GOk|or = + (α^ -^ γ)T=T^0 TqT^0 

Typical values of^ α^ and^ γ^ are 1 and 3.2. Therefore, if V

= 0.6V, then at room temperature:BE0 VBE0.6-1.2050.0260.6-1.205-0.1092|= + (1-3.2)= = -1.826mV/°CT=T 0 300 300 300 T

Derivation of the Temperature Coefficient of the Thermal Voltage (

kT/q )

1.) Consider two identical pn junctions having different current densities,

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

Derivation of the Gain, K, for the Bandgap Voltage Reference 1.) In order to achieve a zero temperature coefficient at T = T

0, the following equation must be satisfied:

V(∆V)BEBE|0 = + K"^ T=T^0 T^ Τ where K" is a constant that satisfies the equation. 2.) Therefore, we getVJ^ V- V(α^ -^ γ)Vt0C1BE0^ GO0 = K"^ ln+ + TJ^ T^0 C2^0 

t0 T 0

J^ C13.) Define K = K" ln, thereforeJ^ C2^  VV- V(α^ -^ γ)Vt0BE0^ GOt00 = K+ + TTT 0 0 0  V- V- VGO^ BE0^ t04.) Solving for K gives^ K =

(α-γ) Vt

Assuming that J^ = A/A= 10 and VC1/JC2^ BE0E1E^

= 0.6V gives, 1.205 - 0.6 + (2.2)(0.026)K = = 25.4690.

5.) The output voltage of the bandgap voltage reference is found as,V|= V+ KV= V+ VREF^ BE0^ t0^ BE0^ GOT=T^0

  • V+ (γ-α)Vor^ V= V+ (γ-α BE0^ t0^ REF^ GO^

)Vt

For the previous values, V= 1.205 + 0.026(2.2) = 1.262V.REF^

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

Variation of the Bandgap Reference Voltage with respect to Temperature^ The previous derivation is only valid at a given temperature, T

  1. As the temperature changes away from T0,

the value of^ ∂V/∂T is no longer zero.REFIllustration: -60^ -40^ -20^0

V^ (V)REF ∂V^ 1.290^ REF= 0T= 400°KT^ ∂^0 1.280V^ 1.270^ ∂REF= 0T= 300°KT∂^0 1.260V1.250 ∂REF= 0T= 200°K^0 T∂1.240T°C^20 40 60 80 100 120 Fig. 4.6-

Bandgap Curvature Correction will be necessary for low ppm/C bandgap references.

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

A CMOS Bandgap Reference using PNP Lateral BJTs Bootstrapped Voltage Reference using PNP Laterals-

V^ DD+R^2 R 3 V^ Q1^ Q2M3REF^ I REFI^ R^24 IR^11 - M2M1 VFig. 4.6-5SS V- VVI I VI^ VABE1 BE2t 12 ts2tE2I = = ln- ln= ln= ln 2 RRI I RI^ RA 2 2 s1 s2 2 s1^2 E1

if I^ = I^ which is forced by the current mirror consisting of M1 and M2.^1 2   ∴^ V= V+ I^ = V+^ REF^ BE1^ 1R^1 BE1^ 

RA 1 E2lnV= V+ KVt^ BE1^ tRA 2 E1 

While an op amp could be used to make I= I^ it suffers from offset and noise and leads to deterioration of the^1 2 bandgap temperature performance.Vis with respect to Vand therefore is susceptible to changes on VREF^ DD^

.DD

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

A CMOS Bandgap Reference using Substrate PNP BJTs^ Operation:

The cascode mirror (M5-M8) keeps the currents in Q1, Q2,and Q3 identical. Thus,V= I^ BE1^ 2R + VBE2or Vt I^ = ln^ n( )^2 R^ Therefore,V= V+ I^ + kV·ln(n)REF^ BE3^ 2(kR) = VBE3^ t^ Use k and n to design the desired value of K (n is an integer greaterkRR than 1).n 1 VSS

M8M7 M9 M6M5 M10 M4M3 + M1 M2 VREF Q2^ Q3Q1 n - Fig. 4.6-

Temp. Indep. Biasing (7/14/00)^

Page 13 ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

Weak Inversion Bandgap Voltage Reference - Continued^ The reference voltage can be expressed as,V= R^ + VREF^ 2I^6 BE5However,WWV6L^3 6L^3 tI^ = I^ = ln^6 R1^ LLR6W^3 6W^31 

W1W4L2L 3 .L1L4W2W 3 

Substituting Iand the previously derived expression for V^6

(T) in Vgives,BEREF^

WRWW6L^321 4L2L^3 V= Vln+ VREF t^ GOLRL6W^31 1L4W2W^3 

TTT^0  1 - + V+ 3VlnBE0 t TTT 0 0 

To achieve^ ∂V/∂T = 0 at T = TREF0, we getVRWWkREF^2 6L^3 1W4L2L^3 =^ lnq^ RLLT^ ^1 6W^3 1L4W2W^3 

VV3kGOBE0- + + TTq^0

Therefore,RWq2W6L^3 1W4L2L^3 ln=^ (VGORLkT1L6W^3 1L4W2W^3 0 

  • V) - 3 BE

Under the above constraint, Vhas an approximate zero value of temperature coefficient at T = TREF^

and has a 0

value ofT3kT^0 V= V+^ 1 + ln= V+ REF^ GO^ GO^ q^ T^ 

3kTq

Practical values of^ ∂V/∂T for the weak inversion bandgap are less than 100 ppm/°C.REF

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

IMPROVEMENT OF THE BANDGAP REFERENCE CIRCUIT Curvature Correction Techniques: • Squared PTAT Correction:^ VBE^ V^ PTAT V^ V^ VRef =BE +PTAT +

Voltage^2^ V^ PTAT^2 V^ PTAT TemperatureFig. 4.6-

Temperature coefficient^ ≈^ 1-20 ppm/°C• V loop BE^ M. Gunaway,^ et. al. , “A Curvature-Corrected Low-Voltage Bandgap Reference,”

IEEE Journal of Solid-

State Circuits , vol. 28, no. 6, pp. 667-670, June 1993.• ß compensationI. Lee^ et. al. , “Exponential Curvature-Compensated BiCMOS Bandgap References,”

IEEE Journal of

Solid-State Circuits , vol. 29, no. 11, pp. 1396-1403, Nov. 1994.• Nonlinear cancellationG.M. Meijer^ et. al. , “A New Curvature-Corrected Bandgap Reference,”

IEEE Journal of Solid-State

Circuits , vol. 17, no. 6, pp. 1139-1143, December 1982.

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

ß^ Compensation Curvature Correction Technique Circuit:^ Operation:^ V =^ VREF^

 BT  BTVin +^ AT^ +^ R^ ♠^ V +^^ AT^ +^ RBE BE^^ (1+ ß )^ ß^  where I=AT I=BT A and B are constant T = temperatureThe temperature dependence of^ ß^ is VREFBTR -1/ T^ -1/ T ß ( T ) ∝ e ⇒^ ß ( T ) =^ Ce 1 +ß 1/ T  BTe Fig. 4.6-11 ∴ V = V ( T ) +^ AT^ +^ REF BEC  Not good for small values of^ V. in V ≥ V + V =^ V +^ V = 1.4V in REF sat.^ GO^ sat.^

Temp. Indep. Biasing (7/14/00)^

Page 17 ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

Nonlinear Cancellation Curvature Correction Technique Objective: Eliminate nonlinear term from the base-emitter.Result: 0.5 ppm/°C from -25°C to 85°C.Operation: From above,^ V =^ V + 4 V ( I^ ) - 3 V ( I^ ) REF^ PTAT^ BEPTATBEConstant^1 Note that,^ I^ ⇒^ I^ ∝Τ^ ⇒^ α^ = 1 PTAT^ c^^0 and^ I^ ⇒^ I^ ∝^ T^ ⇒^ α constant^ c^

Previously we found, T V ( T )^ ♠^ V -^ V - V ( T )^ -(^ γ^ -^ α) Vln  BEGO^ [^ ] GOBE^0 t^ T^0 

 T  T 0 

so that T^ V ( I^ ) = V -^ V - V ( T )^ -(^ γ^ -1) VBEPTATGO^ [^ ] GO^ BE^0 T^0

 Tln  t T^0 

and T^ V ( I^ ) = V -^ V - V ( T )^ -^ γ VBEConstantGO^ [^ ] GO^ BE^0 tT^0

 Tln  T^0 

Combining the above relationships gives, T^ V ( T ) =^ V +^ V -^ [ V -^ V ( T )] - [ REFPTAT^ GO^ GO^ BE^0 T^0

 T γ - 4] Vln  t T^0 

 T If γ ≈ 4, then V ( T ) ♠ V + V^ 1 -^ + REFPTAT GOT^0 

Q4 Q3 Q2 Q1 T V ( T ) BE 0 T 0

V^ CCIConstant I PTATVREF = VCCR^2 Q8Q7 IPTAT Q6 Q5 VBE V VREFBE^ RV^2 VPTATREFR 1 VRPTAT 1 ConventionalCurvature CorrectedBandgap ReferenceBandgap ReferenceFig. 4.6-

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

How do you get a Stable Reference Current from the Bandgap?^ Assume that a temperature stable reference voltage is available (i.e. bandgap reference) and use the zero TCNMOS current sink.The problem is that^ V may not be equal to the value of REF^

V that gives zero TC. GS^ VDD 1:1 Current Mirror R^ I^ I 1 I^ REFR 1 R^2 V REF +^ VGS 1:1 Current Mirror^ R^2 -^ Fig. 4.6-

 VRREF^2  V = I R = R =^ VGS R 22 2 REF  R^ R^1 1   dVR dVV^ dRR^ dRRGS 2 REFREF^2212  ∴ = +^ -^ =^ ^2 dT RdT^ R^ dT^ dT^ R^ R 111 ^1

 dVdRdRREF^21 +^ -^ dT^ dT^ dT 

If the temperature coefficients of^ R and^ R are equal^1

 dRdR^12  =^ , then^ dT^ dT^  dVR dVGS 2 REF = and V is proportional to the temperature dependence of^ V. GS REFdT RdT 1

If the MOSFET is biased at the zero TC point, then the current should have the same dependence on temperatureas^ V. REF

Temp. Indep. Biasing (7/14/00)^ ECE 4430 - Analog Integrated Circuits and Systems^

^ P.E. Allen, 2000

Practical Aspects of Temperature-Independent and Supply-Independent Biasing A temperature-independent and supply-independent current source and its distribution:-^ +

V^ DD^ M7M8M9M5M6M10^ BandgapVoltage,^ R^4^ V^ BGR^3 M13M15M17M19M11M4M3 M1M2M14M16M18M20M12^ I^ PTAT^ RRI^^1 2 To SlaveTo Slave REF Bias Ckt.Bias Ckt.^ R^ ext Q2Q3Q1^ x n Fig. 4.6-

Constant current: VBG^ I^ =^ where^ V =^ V +^ I^ REF^ BG^ BE^3 PTATRext^

VTR = V + ln(n) · R 2 BE 3 2 R^1