Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Analyzing Facility Sizes & Demand Scenarios in Custom Clothing Store, Study notes of Production and Operations Management

Notes from a management class discussing decision making in a custom clothing store. The store is considering building a new facility in another town and must decide between three alternatives: a 2000 sq. Ft., a 10,000 sq. Ft., or a 20,000 sq. Ft. Facility. The notes include information on decision theory, expected monetary value, and decision trees to help determine the best alternative based on various demand scenarios and probabilities.

Typology: Study notes

Pre 2010

Uploaded on 08/07/2009

koofers-user-v1u
koofers-user-v1u 🇺🇸

10 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
MGMT250 Notes September 9, 2004
1. Initial Stuff
A. Schedule
1. Return Homeworks (type it up if text, etc.)
2. We have a Tour….Polar Beverages, Tuesday, Nov. 9, 8:00 am.
3. We will try to finish up Decision Theory today.
4. Case Analysis due next Thursday.
5. Problems for Chapter 5S due next class.
6. For next week read quality assignments. Will try to start Quality today by looking at an overview video, if
time allows.
2. Decision Theory
Questions to begin:
1. What are different decision environments and their characteristics?
2. What are the major elements of the decision analysis for setting up a problem?
3. What were the major methods/criteria used for uncertain environment?
4. What was solution to the problem last time? Which alternative to select?
5. How do we set up/ read the payoff table?
To further complete the payoff table…
4. Determine likelihood of states of nature
5. Evaluate alternatives based on some “criteria”, (e.g. maximize profit) and make selection.
Let us assume that we have a company a custom clothing store, is looking to its future. Business for
this company has been good and it’s looking to build another store in another town. There are a
number of alternatives available to them, they could build a facility with 2000 sq. ft, a facility with
10,000 sq. ft. or a 20,000 sq. ft. facility. They decided to have some estimation done and came up
with the following preliminary numbers. If they built the 2000 sq. ft. facility and demand was low (100
suits a day), then they could expect a net present value on the facility (over the life of the facility) of
$5 million. Actually, this is true if demand is at 400 or 1000 suits per day (the other demand
estimates). If they built the 10,000 sq. ft. facility they would make $3 million with the 100 suit/day
demand, $10 million with the 400 suit/day demand and $12 million, for the 1000 suit/day demand.
Yet, if they built the 20,000 sq. ft. facility, they could expect to lose $4 million over the life of the store
if demand was 100 suit/day. If demand were 400 or 1000 suits/day his returns would be $2 million and
$16 million respectively.
B. Decision Making Under Risk
Sometimes information may be given to you, but only as possible occurrences, e.g. stochastic
environment.
i. you can use expected monetary value (EMV) or expected value as criterion in this case. The
environment here assumes that each state of nature has some probability that it will occur.
The summation of the probabilities is 1 with each state of nature falling between 0 and 1.
Let’s go back to clothing store. Assume the manager hired a marketing consultant to do some initial
research, this consultant found that the probability for demand being 100 suit/day is 0.3 (30%), while
the 400 or 1000 suit/day demand had 20% and 50% chance of occurring, respectively.
Equation to determine this is:
n
j
ijji
VPEV
1
Where EVi is the total expected monetary value for alternative i, Pj is the probability of outcome (state
of nature) j occurring and Vij is the payoff associated with alternative i under outcome j. n is the
number of outcomes.
What are the expected payoffs for each of the three alternatives? Which one would you select?
pf2

Partial preview of the text

Download Analyzing Facility Sizes & Demand Scenarios in Custom Clothing Store and more Study notes Production and Operations Management in PDF only on Docsity!

MGMT250 Notes September 9, 2004

1. Initial Stuff A. Schedule 1. Return Homeworks (type it up if text, etc.) 2. We have a Tour….Polar Beverages, Tuesday, Nov. 9, 8:00 am. 3. We will try to finish up Decision Theory today. 4. Case Analysis due next Thursday. 5. Problems for Chapter 5S due next class. 6. For next week read quality assignments. Will try to start Quality today by looking at an overview video, if time allows.

  1. Decision Theory Questions to begin:
  2. What are different decision environments and their characteristics?
  3. What are the major elements of the decision analysis for setting up a problem?
  4. What were the major methods/criteria used for uncertain environment?
  5. What was solution to the problem last time? Which alternative to select?
  6. How do we set up/ read the payoff table? To further complete the payoff table…
    1. Determine likelihood of states of nature
    2. Evaluate alternatives based on some “criteria”, (e.g. maximize profit) and make selection. Let us assume that we have a company a custom clothing store, is looking to its future. Business for this company has been good and it’s looking to build another store in another town. There are a number of alternatives available to them, they could build a facility with 2000 sq. ft, a facility with 10,000 sq. ft. or a 20,000 sq. ft. facility. They decided to have some estimation done and came up with the following preliminary numbers. If they built the 2000 sq. ft. facility and demand was low ( suits a day), then they could expect a net present value on the facility (over the life of the facility) of $5 million. Actually, this is true if demand is at 400 or 1000 suits per day (the other demand estimates). If they built the 10,000 sq. ft. facility they would make $3 million with the 100 suit/day demand, $10 million with the 400 suit/day demand and $ 12 million, for the 1000 suit/day demand. Yet, if they built the 20,000 sq. ft. facility, they could expect to lose $4 million over the life of the store if demand was 100 suit/day. If demand were 400 or 1000 suits/day his returns would be $2 million and $16 million respectively. B. Decision Making Under Risk Sometimes information may be given to you, but only as possible occurrences, e.g. stochastic environment. i. you can use expected monetary value (EMV) or expected value as criterion in this case. The environment here assumes that each state of nature has some probability that it will occur. The summation of the probabilities is 1 with each state of nature falling between 0 and 1. Let’s go back to clothing store. Assume the manager hired a marketing consultant to do some initial research, this consultant found that the probability for demand being 100 suit/day is 0.3 (30%), while the 400 or 1000 suit/day demand had 20% and 50% chance of occurring, respectively.

Equation to determine this is: 

n j EVi PjV ij 1 Where EVi is the total expected monetary value for alternative i , Pj is the probability of outcome (state of nature) j occurring and Vij is the payoff associated with alternative i under outcome j. n is the number of outcomes. What are the expected payoffs for each of the three alternatives? Which one would you select?

b. Decision Trees are a graphical representation of the decision process. Trees have three elements, chance nodes, decision nodes and branches. Branches that come out of chance nodes are possible outcomes, branches that come out of decision nodes are alternatives. Trees are drawn from left to right and analysis is made from right to left. Let’s make a tree for our example. (see board). Calculations are similar to expected value. Trees may have many levels (an advantage over the table), but we’ll stop at three levels. c. Expected Value of Perfect Information (EVPI). How much would you pay if you knew what was going to happen in the future? Need to calculate EVcertainty and EVrisk, where: EVPI = EVcertainty - EVrisk We have already calculated EVrisk (in step b above), how do we calculate EVcertainty? We determine the best payoff for each state of nature (column) and multiply this best payoff by the probability of that state of nature occurring then sum these values across state of natures.

n j EVcertaint y PjV j 1

(where V^ * j is the best value for a state of nature j ) Quality Video…