Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Mathematics Formulae & Statistical Tables for A-Level, Cheat Sheet of Statistics

List of formulas and tables of statistics in which include trigonometry, arithmetic’s, geometry and binomial series, hyperbolic functions, vectors, differentiation and integrations.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

pumpedup
pumpedup 🇺🇸

4.2

(6)

224 documents

1 / 24

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
ADVANCED SUBSIDIARY GENERAL CERTIFICATE OF EDUCATION
ADVANCED GENERAL CERTIFICATE OF EDUCATION
MATHEMATICS
LIST OF FORMULAE
AND
STATISTICAL T ABLES
(List MF1)
MF1
CST252
January 2007
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18

Partial preview of the text

Download Mathematics Formulae & Statistical Tables for A-Level and more Cheat Sheet Statistics in PDF only on Docsity!

ADVANCED SUBSIDIARY GENERAL CERTIFICATE OF EDUCATION

ADVANCED GENERAL CERTIFICATE OF EDUCATION

MATHEMATICS

LIST OF FORMULAE

AND

STATISTICAL T ABLES

(List MF1)

MF

CST

January 2007

Pure Mathematics

Mensuration

Surface area of sphere = 4 π r^2

Area of curved surface of cone = π r × slant height

Trigonometry

a^2 = b^2 + c^2 − 2 bc cos A

Arithmetic Series

u n = a + ( n − 1 ) d

S n = 12 n ( a + l ) = 12 n { 2 a + ( n − 1 ) d }

Geometric Series

u n = ar n −^1

S n =

a ( 1 − r n )

1 − r

S ∞ =

a

1 − r

for | r | < 1

Summations nr = 1

r^2 = 16 n ( n + 1 )( 2 n + 1 )

nr = 1

r^3 = 14 n^2 ( n + 1 )^2

Binomial Series

n

r

n

r + 1

n + 1

r + 1

( a + b ) n^ = a n^ + (

n

) a n −^1 b + (

n

) a n −^2 b^2 +... + (

n

r

) a n − r^ br^ +... + b n^ ( n ∈ ),

where (

n

r

) = n C r =

n!

r !( n − r )!

( 1 + x ) n^ = 1 + nx +

n ( n − 1 )

x^2 +... +

n ( n − 1 )... ( n − r + 1 )

1.2.3... r

x r^ +... (| x | < 1, n ∈ )

Logarithms and exponentials

e x^ ln^ a^ = a x

Complex Numbers

{ r (cos θ + i sin θ)} n^ = r n (cos n θ + i sin n θ)

e i^ θ^ = cos θ + i sin θ

The roots of  n^ = 1 are given by  = e

2 π k i

n , for k = 0, 1, 2,... , n − 1

Vectors

The resolved part of a in the direction of b is

a.b

| b |

The point dividing AB in the ratio λ : μ is

μ a + λ b

Vector product: a × b = | a | | b | sin θ n ˆ =

i a 1 b 1

j a 2 b 2

k a 3 b 3

a 2 b 3 − a 3 b 2

a 3 b 1 − a 1 b 3

a 1 b 2 − a 2 b 1

If A is the point with position vector a = a 1 i + a 2 j + a 3 k and the direction vector b is given by

b = b 1 i + b 2 j + b 3 k , then the straight line through A with direction vector b has cartesian equation

x − a 1

b 1

y − a 2

b 2

 − a 3

b 3

The plane through A with normal vector n = n 1 i + n 2 j + n 3 k has cartesian equation

n 1 x + n 2 y + n 3  + d = 0, where d = − a.n

The plane through non-collinear points A , B and C has vector equation

r = a + λ ( b − a ) + μ( c − a ) = ( 1 − λ − μ) a + λ b + μ c

The plane through the point with position vector a and parallel to b and c has equation r = a + s b + t c

The perpendicular distance of ( α, β, γ ) from n 1 x + n 2 y + n 3  + d = 0 is

∣ n 1 α^ +^ n 2 β^ +^ n 3 γ^ +^ d

( n^21 + n^22 + n^23 )

Matrix transformations

Anticlockwise rotation through θ about O : (

cos θ − sin θ

sin θ cos θ

Reflection in the line y = (tan θ) x : (

cos 2 θ sin 2 θ

sin 2 θ − cos 2 θ

Differentiation

f( x ) f′^ ( x )

tan kx k sec 2 kx

sin−^1 x

( 1 − x^2 )

cos−^1 x −

( 1 − x^2 )

tan−^1 x

1 + x^2

sec x sec x tan x

cot x − cosec^2 x

cosec x − cosec x cot x

sinh x cosh x

cosh x sinh x

tanh x sech 2 x

sinh−^1 x

( 1 + x^2 )

cosh−^1 x

( x^2 − 1 )

tanh−^1 x

1 − x^2

If y =

f( x )

g( x )

then

d y

d x

f ′^ ( x )g( x ) − f( x )g′^ ( x )

{g( x )}^2

Integration ( + constant; a > 0 where relevant)

f( x ) ^ f( x ) d x

sec^2 kx

k

tan kx

tan x ln |sec x |

cot x ln |sin x |

cosec x − ln |cosec x + cot x | = ln ∣∣tan 12 x ∣∣

sec x ln |sec x + tan x | = ln ∣∣tan(^12 x + 14 π)∣∣

sinh x cosh x

cosh x sinh x

tanh x ln cosh x

( a^2 − x^2 )

sin−^1 (

x

a

) (| x | < a )

a^2 + x^2

a

tan−^1 (

x

a

( x^2 − a^2 )

cosh−^1 (

x

a

) or ln{ x +

( x^2 − a^2 )} ( x > a )

( a^2 + x^2 )

sinh−^1 (

x

a

) or ln{ x +

( x^2 + a^2 )}

a^2 − x^2

2 a

ln

a + x

a − x

a

tanh−^1 (

x

a

) (| x | < a )

x^2 − a^2

2 a

ln ∣∣

x − a

x + a

 u d v

d x

d x = uv − ^ v

d u

d x

d x

Area of a sector

A = 12  r^2 d θ (polar coordinates)

A = 12 ^ ( x

d y

d t

− y

d x

d t

) d t (parametric form)

Numerical Mathematics

Numerical integration

The trapezium rule: 

b a

y d x ≈ 12 h {( y 0 + yn ) + 2 ( y 1 + y 2 +... + yn − 1 )}, where h =

b − a

n

Simpson’s Rule: 

b a

y d x ≈ 13 h {( y 0 + y n ) + 4 ( y 1 + y 3 +... + y n − 1 ) + 2 ( y 2 + y 4 +... + yn − 2 )},

where h =

b − a

n

and n is even

Numerical Solution of Equations

The Newton-Raphson iteration for solving f( x ) = 0: xn + 1 = x n −

f( x n )

f′^ ( x n )

Probability & Statistics

Probability

P( A ∪ B ) = P( A ) + P( B ) − P( A ∩ B )

P( A ∩ B ) = P( A )P( B | A )

P( A | B ) =

P( B | A )P( A )

P( B | A )P( A ) + P( B | A ′^ )P( A ′^ )

Bayes’ Theorem: P( Aj | B ) =

P( Aj )P( B | Aj )

ΣP( A i )P( B | Ai )

Discrete distributions

For a discrete random variable X taking values x i with probabilities p i

Expectation (mean): E( X ) = μ = Σ x i p i

Variance: Var( X ) = σ^2 = Σ( x i − μ)^2 p i = Σ x^2 i p i − μ^2

For a function g( X ): E(g( X )) = Σ g( x i ) p i

The probability generating function of X is G X ( t ) = E( t X^ ), and

E( X ) = G′ X ( 1 )

Var( X ) = G′′ X ( 1 ) + G′ X ( 1 ) − {G′ X ( 1 )}^2

For Z = X + Y , where X and Y are independent: G Z ( t ) = G X ( t )G Y ( t )

Standard discrete distributions

Distribution of X P( X = x ) Mean Variance P.G.F.

Binomial B( n , p ) (

n

x

) p x ( 1 − p ) n − x^ np np ( 1 − p ) ( 1 − p + pt ) n

Poisson Po( λ ) e−^ λ^

λ x

x!

λ λ e^ λ^ ( t −^1 )

Geometric Geo( p ) on 1, 2, … p ( 1 − p ) x −^1

p

1 − p

p^2

pt

1 − ( 1 − p ) t

Continuous distributions

For a continuous random variable X having probability density function f

Expectation (mean): E( X ) = μ = ^ x f( x ) d x

Variance: Var( X ) = σ^2 =  ( x − μ)^2 f( x ) d x = ^ x^2 f( x ) d x − μ^2

For a function g( X ): E(g( X )) = ^ g( x )f( x ) d x

Cumulative distribution function: F( x ) = P( X ≤ x ) = 

x −∞

f( t ) d t

The moment generating function of X is M X ( t ) = E(e tX^ ) and

E( X ) = M′ X ( 0 )

E( X n ) = M( Xn )( 0 )

Var( X ) = M′′ X ( 0 ) − {M′ X ( 0 )}^2

For Z = X + Y , where X and Y are independent: M Z ( t ) = M X ( t )M Y ( t )

Standard continuous distributions

Distribution of X P.D.F. Mean Variance M.G.F.

Uniform (Rectangular) on [ a , b ]

b − a

1

2 ( a^ +^ b )^

1

12 ( b^ −^ a )

2 e

bt − e at

( b − a ) t

Exponential λ e−^ λ^ x^

λ − t

Normal N( μ, σ^2 )

e−

1

2 (^

x − μ

2

μ σ^2 e^ μ t +

1 2 σ (^2) t 2 Expectation algebra

Covariance: Cov( X , Y ) = E(( X − μ X )( Y − μ Y )) = E( XY ) − μ X μ Y

Var( aX ± bY ) = a^2 Var( X ) + b^2 Var( Y ) ± 2 ab Cov( X , Y )

Product moment correlation coefficient: ρ =

Cov( X , Y )

σ X σ Y

If X = aX ′^ + b and Y = cY ′^ + d , then Cov( X , Y ) = ac Cov( X ′, Y ′^ )

For independent random variables X and Y

E( XY ) = E( X )E( Y )

Var( aX ± bY ) = a^2 Var( X ) + b^2 Var( Y )

Sampling distributions

For a random sample X 1 , X 2 ,... , Xn of n independent observations from a distribution having mean μ

and variance σ^2

X is an unbiased estimator of μ, with Var( X ) =

σ^2

n

S^2 is an unbiased estimator of σ^2 , where S^2 =

Σ( Xi − X )^2

n − 1

For a random sample of n observations from N( μ, σ^2 )

X − μ

n

∼ N(0, 1)

X − μ

S /

n

∼ tn − 1 (also valid in matched-pairs situations)

If X is the observed number of successes in n independent Bernoulli trials in each of which the

probability of success is p , and Y =

X

n

, then

E( Y ) = p and Var( Y ) =

p ( 1 − p )

n

For a random sample of n x observations from N( μ x , σ x^2 ) and, independently, a random sample of

n y observations from N( μ y , σ y^2 )

( X − Y ) − ( μ x − μ y )

σ x^2

n x

σ y^2

n y

∼ N(0, 1)

If σ x^2 = σ y^2 = σ^2 (unknown) then

( X − Y ) − ( μ x − μ y )

{ S^2 p (

n x

n y

∼ tn

x + n^ y −^2

where S^2 p =

( n x − 1 ) S^2 x + ( n y − 1 ) S y^2

nx + n y − 2

CUMULATIVE BINOMIAL PROBABILITIES

n^

p

x^

n^

p

x^

n^

p

x^

n^

p

x^

CUMULATIVE BINOMIAL PROBABILITIES

n^

p

x^

n^

(^10) p^

x^

n^

(^12) p^

x^

CUMULATIVE BINOMIAL PROBABILITIES

n^

(^18) p^

x^

n^

(^20) p^

x^

CUMULATIVE BINOMIAL PROBABILITIES

n^

(^25) p^

x^

CUMULATIVE POISSON PROBABILITIES

THE NORMAL DISTRIBUTION FUNCTION

If Z has a normal distribution with mean 0 and

variance 1 then, for each value of , the table gives

the value of Φ(), where

Φ() = P( Z ≤ ).

For negative values of  use Φ(−) = 1 − Φ().

 0 1 2 3 4 5 6 7 8 9 1 2^3 4 5 6 7 8

ADD

Critical values for the normal distribution

If Z has a normal distribution with mean 0 and

variance 1 then, for each value of p , the table gives

the value of  such that

P( Z ≤ ) = p.

p 0.75 0.90 0.95 0.975 0.99 0.995 0.9975 0.999 0.  0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.

CRITICAL VALUES FOR THE t DISTRIBUTION

If T has a t distribution with v degrees of freedom

then, for each pair of values of p and v , the table gives the value of t such that

  • λ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.
  • x = 0 0.9900 0.9802 0.9704 0.9608 0.9512 0.9418 0.9324 0.9231 0. - 1 1.0000 0.9998 0.9996 0.9992 0.9988 0.9983 0.9977 0.9970 0. - 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0. - 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.
    • λ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.
  • x = 0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0. - 1 0.9953 0.9825 0.9631 0.9384 0.9098 0.8781 0.8442 0.8088 0. - 2 0.9998 0.9989 0.9964 0.9921 0.9856 0.9769 0.9659 0.9526 0. - 3 1.0000 0.9999 0.9997 0.9992 0.9982 0.9966 0.9942 0.9909 0. - 4 1.0000 1.0000 1.0000 0.9999 0.9998 0.9996 0.9992 0.9986 0. - 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0. - 6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.
    • λ 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.
  • x = 0 0.3679 0.3329 0.3012 0.2725 0.2466 0.2231 0.2019 0.1827 0.1653 0. - 1 0.7358 0.6990 0.6626 0.6268 0.5918 0.5578 0.5249 0.4932 0.4628 0. - 2 0.9197 0.9004 0.8795 0.8571 0.8335 0.8088 0.7834 0.7572 0.7306 0. - 3 0.9810 0.9743 0.9662 0.9569 0.9463 0.9344 0.9212 0.9068 0.8913 0. - 4 0.9963 0.9946 0.9923 0.9893 0.9857 0.9814 0.9763 0.9704 0.9636 0. - 5 0.9994 0.9990 0.9985 0.9978 0.9968 0.9955 0.9940 0.9920 0.9896 0. - 6 0.9999 0.9999 0.9997 0.9996 0.9994 0.9991 0.9987 0.9981 0.9974 0. - 7 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9997 0.9996 0.9994 0. - 8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0. - 9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.
    • λ 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.
  • x = 0 0.1353 0.1225 0.1108 0.1003 0.0907 0.0821 0.0743 0.0672 0.0608 0. - 1 0.4060 0.3796 0.3546 0.3309 0.3084 0.2873 0.2674 0.2487 0.2311 0. - 2 0.6767 0.6496 0.6227 0.5960 0.5697 0.5438 0.5184 0.4936 0.4695 0. - 3 0.8571 0.8386 0.8194 0.7993 0.7787 0.7576 0.7360 0.7141 0.6919 0. - 4 0.9473 0.9379 0.9275 0.9162 0.9041 0.8912 0.8774 0.8629 0.8477 0. - 5 0.9834 0.9796 0.9751 0.9700 0.9643 0.9580 0.9510 0.9433 0.9349 0. - 6 0.9955 0.9941 0.9925 0.9906 0.9884 0.9858 0.9828 0.9794 0.9756 0. - 7 0.9989 0.9985 0.9980 0.9974 0.9967 0.9958 0.9947 0.9934 0.9919 0. - 8 0.9998 0.9997 0.9995 0.9994 0.9991 0.9989 0.9985 0.9981 0.9976 0. - 9 1.0000 0.9999 0.9999 0.9999 0.9998 0.9997 0.9996 0.9995 0.9993 0. - 10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9998 0. - 11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0. - 12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.
    • λ 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.
  • x = 0 0.0498 0.0450 0.0408 0.0369 0.0334 0.0302 0.0273 0.0247 0.0224 0. - 1 0.1991 0.1847 0.1712 0.1586 0.1468 0.1359 0.1257 0.1162 0.1074 0. - 2 0.4232 0.4012 0.3799 0.3594 0.3397 0.3208 0.3027 0.2854 0.2689 0. - 3 0.6472 0.6248 0.6025 0.5803 0.5584 0.5366 0.5152 0.4942 0.4735 0. - 4 0.8153 0.7982 0.7806 0.7626 0.7442 0.7254 0.7064 0.6872 0.6678 0. - 5 0.9161 0.9057 0.8946 0.8829 0.8705 0.8576 0.8441 0.8301 0.8156 0. - 6 0.9665 0.9612 0.9554 0.9490 0.9421 0.9347 0.9267 0.9182 0.9091 0. - 7 0.9881 0.9858 0.9832 0.9802 0.9769 0.9733 0.9692 0.9648 0.9599 0. - 8 0.9962 0.9953 0.9943 0.9931 0.9917 0.9901 0.9883 0.9863 0.9840 0. - 9 0.9989 0.9986 0.9982 0.9978 0.9973 0.9967 0.9960 0.9952 0.9942 0. - 10 0.9997 0.9996 0.9995 0.9994 0.9992 0.9990 0.9987 0.9984 0.9981 0. - 11 0.9999 0.9999 0.9999 0.9998 0.9998 0.9997 0.9996 0.9995 0.9994 0. - 12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9998 0. - 13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0. - 14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.
    • λ 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4. CUMULATIVE POISSON PROBABILITIES
  • x = 0 0.0183 0.0166 0.0150 0.0136 0.0123 0.0111 0.0101 0.0091 0.0082 0. - 1 0.0916 0.0845 0.0780 0.0719 0.0663 0.0611 0.0563 0.0518 0.0477 0. - 2 0.2381 0.2238 0.2102 0.1974 0.1851 0.1736 0.1626 0.1523 0.1425 0. - 3 0.4335 0.4142 0.3954 0.3772 0.3594 0.3423 0.3257 0.3097 0.2942 0. - 4 0.6288 0.6093 0.5898 0.5704 0.5512 0.5321 0.5132 0.4946 0.4763 0. - 5 0.7851 0.7693 0.7531 0.7367 0.7199 0.7029 0.6858 0.6684 0.6510 0. - 6 0.8893 0.8786 0.8675 0.8558 0.8436 0.8311 0.8180 0.8046 0.7908 0. - 7 0.9489 0.9427 0.9361 0.9290 0.9214 0.9134 0.9049 0.8960 0.8867 0. - 8 0.9786 0.9755 0.9721 0.9683 0.9642 0.9597 0.9549 0.9497 0.9442 0. - 9 0.9919 0.9905 0.9889 0.9871 0.9851 0.9829 0.9805 0.9778 0.9749 0. - 10 0.9972 0.9966 0.9959 0.9952 0.9943 0.9933 0.9922 0.9910 0.9896 0. - 11 0.9991 0.9989 0.9986 0.9983 0.9980 0.9976 0.9971 0.9966 0.9960 0. - 12 0.9997 0.9997 0.9996 0.9995 0.9993 0.9992 0.9990 0.9988 0.9986 0. - 13 0.9999 0.9999 0.9999 0.9998 0.9998 0.9997 0.9997 0.9996 0.9995 0. - 14 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0. - 15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0. - 16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.
    • λ 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.
  • x = 0 0.0067 0.0041 0.0025 0.0015 0.0009 0.0006 0.0003 0.0002 0.0001 0. - 1 0.0404 0.0266 0.0174 0.0113 0.0073 0.0047 0.0030 0.0019 0.0012 0. - 2 0.1247 0.0884 0.0620 0.0430 0.0296 0.0203 0.0138 0.0093 0.0062 0. - 3 0.2650 0.2017 0.1512 0.1118 0.0818 0.0591 0.0424 0.0301 0.0212 0. - 4 0.4405 0.3575 0.2851 0.2237 0.1730 0.1321 0.0996 0.0744 0.0550 0. - 5 0.6160 0.5289 0.4457 0.3690 0.3007 0.2414 0.1912 0.1496 0.1157 0. - 6 0.7622 0.6860 0.6063 0.5265 0.4497 0.3782 0.3134 0.2562 0.2068 0. - 7 0.8666 0.8095 0.7440 0.6728 0.5987 0.5246 0.4530 0.3856 0.3239 0. - 8 0.9319 0.8944 0.8472 0.7916 0.7291 0.6620 0.5925 0.5231 0.4557 0. - 9 0.9682 0.9462 0.9161 0.8774 0.8305 0.7764 0.7166 0.6530 0.5874 0. - 10 0.9863 0.9747 0.9574 0.9332 0.9015 0.8622 0.8159 0.7634 0.7060 0. - 11 0.9945 0.9890 0.9799 0.9661 0.9467 0.9208 0.8881 0.8487 0.8030 0. - 12 0.9980 0.9955 0.9912 0.9840 0.9730 0.9573 0.9362 0.9091 0.8758 0. - 13 0.9993 0.9983 0.9964 0.9929 0.9872 0.9784 0.9658 0.9486 0.9261 0. - 14 0.9998 0.9994 0.9986 0.9970 0.9943 0.9897 0.9827 0.9726 0.9585 0. - 15 0.9999 0.9998 0.9995 0.9988 0.9976 0.9954 0.9918 0.9862 0.9780 0. - 16 1.0000 0.9999 0.9998 0.9996 0.9990 0.9980 0.9963 0.9934 0.9889 0. - 17 1.0000 1.0000 0.9999 0.9998 0.9996 0.9992 0.9984 0.9970 0.9947 0. - 18 1.0000 1.0000 1.0000 0.9999 0.9999 0.9997 0.9993 0.9987 0.9976 0. - 19 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9995 0.9989 0. - 20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9996 0. - 21 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0. - 22 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0. - 23 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0. - 24 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.
    • λ 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19. CUMULATIVE POISSON PROBABILITIES
  • x = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. - 1 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. - 2 0.0028 0.0012 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0. - 3 0.0103 0.0049 0.0023 0.0011 0.0005 0.0002 0.0001 0.0000 0.0000 0. - 4 0.0293 0.0151 0.0076 0.0037 0.0018 0.0009 0.0004 0.0002 0.0001 0. - 5 0.0671 0.0375 0.0203 0.0107 0.0055 0.0028 0.0014 0.0007 0.0003 0. - 6 0.1301 0.0786 0.0458 0.0259 0.0142 0.0076 0.0040 0.0021 0.0010 0. - 7 0.2202 0.1432 0.0895 0.0540 0.0316 0.0180 0.0100 0.0054 0.0029 0. - 8 0.3328 0.2320 0.1550 0.0998 0.0621 0.0374 0.0220 0.0126 0.0071 0. - 9 0.4579 0.3405 0.2424 0.1658 0.1094 0.0699 0.0433 0.0261 0.0154 0. - 10 0.5830 0.4599 0.3472 0.2517 0.1757 0.1185 0.0774 0.0491 0.0304 0. - 11 0.6968 0.5793 0.4616 0.3532 0.2600 0.1848 0.1270 0.0847 0.0549 0. - 12 0.7916 0.6887 0.5760 0.4631 0.3585 0.2676 0.1931 0.1350 0.0917 0. - 13 0.8645 0.7813 0.6815 0.5730 0.4644 0.3632 0.2745 0.2009 0.1426 0. - 14 0.9165 0.8540 0.7720 0.6751 0.5704 0.4657 0.3675 0.2808 0.2081 0. - 15 0.9513 0.9074 0.8444 0.7636 0.6694 0.5681 0.4667 0.3715 0.2867 0. - 16 0.9730 0.9441 0.8987 0.8355 0.7559 0.6641 0.5660 0.4677 0.3751 0. - 17 0.9857 0.9678 0.9370 0.8905 0.8272 0.7489 0.6593 0.5640 0.4686 0. - 18 0.9928 0.9823 0.9626 0.9302 0.8826 0.8195 0.7423 0.6550 0.5622 0. - 19 0.9965 0.9907 0.9787 0.9573 0.9235 0.8752 0.8122 0.7363 0.6509 0. - 20 0.9984 0.9953 0.9884 0.9750 0.9521 0.9170 0.8682 0.8055 0.7307 0. - 21 0.9993 0.9977 0.9939 0.9859 0.9712 0.9469 0.9108 0.8615 0.7991 0. - 22 0.9997 0.9990 0.9970 0.9924 0.9833 0.9673 0.9418 0.9047 0.8551 0. - 23 0.9999 0.9995 0.9985 0.9960 0.9907 0.9805 0.9633 0.9367 0.8989 0. - 24 1.0000 0.9998 0.9993 0.9980 0.9950 0.9888 0.9777 0.9594 0.9317 0. - 25 1.0000 0.9999 0.9997 0.9990 0.9974 0.9938 0.9869 0.9748 0.9554 0. - 26 1.0000 1.0000 0.9999 0.9995 0.9987 0.9967 0.9925 0.9848 0.9718 0. - 27 1.0000 1.0000 0.9999 0.9998 0.9994 0.9983 0.9959 0.9912 0.9827 0. - 28 1.0000 1.0000 1.0000 0.9999 0.9997 0.9991 0.9978 0.9950 0.9897 0. - 29 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9989 0.9973 0.9941 0. - 30 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9986 0.9967 0. - 31 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9993 0.9982 0. - 32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9990 0. - 33 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9995 0. - 34 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0. - 35 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0. - 36 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0. - 37 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0. - 38 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. - p 0.75 0.90 0.95 0.975 0.99 0.995 0.9975 0.999 0. P( T ≤ t ) = p
  • v = 1 1.000 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636. - 2 0.816 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31. - 3 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12. - 4 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8. - 5 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.894 6. - 6 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5. - 7 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5. - 8 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5. - 9 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4. - 10 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4. - 11 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4. - 12 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4. - 13 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4. - 14 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4. - 15 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4. - 16 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4. - 17 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3. - 18 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3. - 19 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3. - 20 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3. - 21 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3. - 22 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3. - 23 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3. - 24 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3. - 25 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3. - 26 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3. - 27 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3. - 28 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3. - 29 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3. - 30 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3. - 40 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3. - 60 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.
    • 120 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3. - ∞ 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.