Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Statistics and Applications - Formula Sheet in Test 3 | STAT 380, Exams of Statistics

Material Type: Exam; Class: Statistics and Applications; Subject: Statistics ; University: University of Nebraska - Lincoln; Term: Fall 2005;

Typology: Exams

Pre 2010

Uploaded on 08/30/2009

koofers-user-glc
koofers-user-glc 🇺🇸

10 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Test #3 Formula Sheet
STAT 380
Fall 2005
Chapter 2
De Morgan’s Laws: (AB) = AB and (AB) = AB
Generalized multiplication rule: n1n2nk
P(AB) = P(A) + P(B) – P(AB)
P(ABC) = P(A) + P(B) + P(C) – P(AB) – P(AC) – P(BC) + P(ABC)
P(A) + P(A) = 1
P(A B)
P(A | B) P(B)
Sensitivity = P(Test is Positive | Actual is Yes)
Specificity = P(Test is Negative | Actual is No)
Chapter 3
PDF for discrete random variable properties: f(x)0,
xf(x ) 1
, P(X=x) = f(x)
F(x) = P(Xx) =
t x f(t)
PDF for continuous random variable properties: f(x)0,
f(x )dx 1
, P(a<X<b) =
b
af(x )dx
F(x) = P(Xx) =
xf(t)dt
dF(x) f(x)
dx
Joint PDF for two discrete random variables properties: f(x,y) 0,
x y f(x, y) 1
, P(X=x, Y=y) =
f(x,y)
Joint PDF for two continuous random variables properties: f(x,y) 0,
,
P[(X, Y) A] =
A
f(x, y) dx dy
F(x,y) = P(Xx, Yy) =
x y
f(t, s) dtds
Marginal PDF:
y
g(x) f(x,y)
and
g(x) f(x,y) dy
Conditional PDF:
f(x, y)
f(y | x ) g(x)
for g(x) > 0
Independence: f(x,y) = g(x)h(y) and f(x|y) = g(x)
Chapter 4
= E(X) =
x
x f(x )
and = E(X) =
x f(x)dx
g(X) = E[g(X)] =
x
g(x) f( x)
and g(X) = E[g(X)] =
g(x) f( x) dx
g(X,Y) = E[g(X,Y)] =
x y
g(x,y) f (x, y)
and g(X,Y) = E[g(X,Y)] =
g(x,y) f (x, y) dx dy
Var(X) = 2 = E[(X-)2] =
2
x
(x ) f(x )
and Var(X) = 2 = E[(X-)2] =
2
(x ) f(x )dx
2 = E(X2) - 2
1
pf3
pf4
pf5

Partial preview of the text

Download Statistics and Applications - Formula Sheet in Test 3 | STAT 380 and more Exams Statistics in PDF only on Docsity!

Test #3 Formula Sheet

STAT 380

Fall 2005

Chapter 2

De Morgan’s Laws: (AB) = AB and (AB) = AB

Generalized multiplication rule: n 1

n 2

…n k

P(AB) = P(A) + P(B) – P(AB)

P(ABC) = P(A) + P(B) + P(C) – P(AB) – P(AC) – P(BC) + P(ABC)

P(A) + P(A) = 1

P(A B)

P(A | B)

P(B)

Sensitivity = P(Test is Positive | Actual is Yes)

Specificity = P(Test is Negative | Actual is No)

Chapter 3

 PDF for discrete random variable properties: f(x)0, x

f(x)  1  , P(X=x) = f(x)

 F(x) = P(Xx) = t x

f(t)

 PDF for continuous random variable properties: f(x)0,

f(x)dx 1

 

, P(a<X<b) =

b

a

f(x)dx

 F(x) = P(Xx) =

x

f(t)dt

 

d

F(x) f(x)

dx

 Joint PDF for two discrete random variables properties: f(x,y)  0, x y

f(x,y)  1   , P(X=x, Y=y) =

f(x,y)

 Joint PDF for two continuous random variables properties: f(x,y)  0, f(x,y) dx dy 1

 

   

P[(X, Y) A] =

A

f(x,y) dx dy



 F(x,y) = P(Xx, Yy) =

x y

f(t,s) dt ds

   

 Marginal PDF: y

g(x)  f(x,y)  and g(x) f(x,y) dy

 

 Conditional PDF:

f(x,y)

f(y | x)

g(x)

for g(x) > 0

 Independence: f(x,y) = g(x)h(y) and f(x|y) = g(x)

Chapter 4

 = E(X) =

x

x f(x) 

and  = E(X) =

x f(x) dx

 

g(X)

= E[g(X)] =

x

g(x) f(x) 

and  g(X)

= E[g(X)] =

g(x) f(x) dx

 

g(X,Y)

= E[g(X,Y)] =

x y

g(x,y) f(x,y)  

and  g(X,Y)

= E[g(X,Y)] =

g(x,y) f(x,y) dx dy

 

   

Var(X) = 

2

= E[(X-)

2

] =

2

x

(x  ) f(x) 

and Var(X) = 

2

= E[(X-)

2

] =

2

(x ) f(x) dx

 

2

= E(X

2

2

2 2

2

g(X) g(X) g(X)

x

  E g(X)    g(x)   f(x) 

and  

2 2

2

g(X) g(X) g(X)

E g(X) g(x) f(x) dx

 

Cov(X,Y) =

XY X Y X Y

x y

  E  X   Y    x   y   f(x,y)  

and

XY X Y X Y

E X Y x y f(x,y) dx dy

 

   

XY

= E(XY) - 

X

Y

Corr(X,Y) =

XY

XY

X Y

E[g(X)  h(X)] = E[g(X)]  E[h(X)]

E[g(X,Y)  h(X,Y)] = E[g(X,Y)]  E[h(X,Y)]

E(XY) = E(X)E(Y) if X and Y are independent

If a and b are constants, then

E(aX+b) = aE(X) + b

Var(aX + b) =

2 2 2

aX b X

a

   = a

2

2

Var(aX + bY) =

2 2 2 2 2

aX bY X Y XY

a b 2ab

 Var(a 1

X

1

  • a 2

X

2

  • … + a n

X

n

n

2

i i

i 1

a Var(X )

 + i j i j

i j

2 a a Cov(X , X )

n

2

i i

i 1

a Var(X )

 + i j i j

i j

a a Cov(X , X )

for constants a 1

,…,a n

 P( - k < X <  + k)  1 -

2

k

Chapter 5

 Discrete uniform PDF: 1 2 k

f(x;k) 1/ k, for x x ,x ,...,x ;

k

i

i 1

E(X) x / k

 and  

k

2

i

i 1

Var(X) x / k

 Binomial PDF:

x n x

n

f(x;n,p) p (1 p)

x

for x=0,1,2,…,n; E(X) = np, Var(X) = np(1-p),

n n!

x x!(n x)!

 Poisson PDF:

t x

e ( t)

f(x; t)

x!

 

  for x = 0, 1, 2, …;

E(X) t and

Var(X) t

 Excel functions:

BINOMDIST(x,n,p,TRUE) finds F(x) for a binomial PDF

POISSON(x,*t,TRUE)t,TRUE) finds F(x) for a Poisson PDF

Chapter 6

Uniform PDF:

for A x B

f(x;A,B) B A

0 otherwise

where

A B

E(X)

and

2

(B A)

Var(X)

Normal PDF:

2

2

(x )

2

f(x; , ) e for - x

 

; E(X)= and Var(X)=

2

X

Z

 Chi-squared PDF:

/ 2 1 x / 2

/ 2

x e for x>

f(x) 2 ( / 2)

0 otherwise

  



where  is a positive integer; E(X) = 

and Var(X) = 2

2 2

n

i 2

2 2

i 1

(n 1)S (X X)

has a chi-squared PDF with =n-1 provided random sample from a

normal PDF

 t-distribution:

( 1) / 2

2

t

h(t) 1

 

for - < t < 

Z

T

V /

has a t-distribution provided Z is a standard normal random variable, V a chi-squared

random variable, and Z and V are independent

X

T

S / n

has a t-distribution with  = n-1 provided random sample is from a normal PDF

 Excel functions:

AVERAGE(range) finds the sample mean

CHIDIST(x,  ) finds 1-F(x) for a chi-square PDF

CHIINV(prob.,  ) finds x in P(X>x) for a chi-square PDF

COUNTIF(range,”condition"

finds the # of times a condition has been satisfied

NORMDIST(x,,, TRUE) finds F(x) for a normal PDF

NORMINV(prob.,,) finds x in P(X<x) for a normal PDF

STDEV(range) finds the sample standard deviation

TDIST(t,  , 1)) finds 1-H(t) for a t-distribution for a positive t

TINV(2prob.,  ) finds t in P(T>t) for a t-distribution

VAR(range) finds the sample variance

Chapter 9

/ 2,n 1 / 2,n 1

s s

x t x t

n n

   

2

/ 2

z

n=

e



2 2 2 2

1 2 1 2

1 2 / 2, 1 2 1 2 / 2,

1 2 1 2

s s s s

x x t x x t

n n n n

   

           where

   

2

2 2

1 2

1 2

2 2

2 2

1 1 2 2

1 2

s s

n n

s n s n

n 1 n 1

d d

/ 2,n 1 D / 2,n 1

s s

d t d t

n n

   

/ 2 / 2

2 2

/ 2 / 2

p(1 p) p(1 p)

p z p p z

n z n z

 

 

where

2

/ 2

2

/ 2

x (z ) 2

p

n (z )





2

/ 2

2

z p(1 p)

n

e



2

/ 2

2

z

n

4e



if ˆ p 0.

1 1 2 2 1 1 2 2

1 2 / 2 1 2 1 2 / 2

1 2 1 2

p (1 p ) p (1 p ) p (1 p ) p (1 p )

p p z p p p p z

n 2 n 2 n 2 n 2

 

    where

1

1

1

x 1

p

n 2

and

2

2

2

x 1

p

n 2

n

1 n i

i 1

L(x ,...,x , ) f(x ; )

where  is the parameter of interest

Chapter 10

Hypothesis test for 

Test statistic:

0

x

t

s / n

Critical values for a two-tail test: ±t /2, n-

P-value for a two-tail test: 2P(T>|t|)

Hypothesis test for  1

2

 

2 2

1 2

1 2 1 2

1 2

s s

t x x ( )

n n

Critical values for a two-tail test: ±t /2, 

where

   

2 2

2 2 2

2 2

1 1 2 2

1 2

1 2 1 2

s n s n

s s

n n n 1 n 1

P-value for a two-tail test: 2P(T>|t|)

Hypothesis test for  D

Test statistic:

D

D

d

t

s n

Critical values for a two-tail test: ±t /2, n-

P-value for a two-tail test: 2P(T>|t|)

Hypothesis test for p

0

0 0

p p

z

p (1 p ) / n

where

p x / n

Critical values for a two-tail test: ±z



/

P-value for a two-tail test: 2P(Z>|z|)

Hypothesis test for p 1

-p 2

c c

1 2

p p 0

z

p (1 p )

n n

where 1 1 1

p x / n , 2 2 2

p x / n , and

1 2

c

1 2

x x

p

n n

Critical values for a two-tail test: ±z /

P-value for a two-tail test: 2P(Z>|z|)