



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Exam; Class: Statistics and Applications; Subject: Statistics ; University: University of Nebraska - Lincoln; Term: Fall 2005;
Typology: Exams
1 / 5
This page cannot be seen from the preview
Don't miss anything!
Test #3 Formula Sheet
Fall 2005
Chapter 2
De Morgan’s Laws: (AB) = AB and (AB) = AB
Generalized multiplication rule: n 1
n 2
…n k
Sensitivity = P(Test is Positive | Actual is Yes)
Specificity = P(Test is Negative | Actual is No)
Chapter 3
PDF for discrete random variable properties: f(x)0, x
f(x) 1 , P(X=x) = f(x)
F(x) = P(Xx) = t x
f(t)
PDF for continuous random variable properties: f(x)0,
f(x)dx 1
, P(a<X<b) =
b
a
f(x)dx
F(x) = P(Xx) =
x
f(t)dt
d
F(x) f(x)
dx
Joint PDF for two discrete random variables properties: f(x,y) 0, x y
f(x,y) 1 , P(X=x, Y=y) =
f(x,y)
Joint PDF for two continuous random variables properties: f(x,y) 0, f(x,y) dx dy 1
A
f(x,y) dx dy
F(x,y) = P(Xx, Yy) =
x y
f(t,s) dt ds
Marginal PDF: y
g(x) f(x,y) and g(x) f(x,y) dy
Conditional PDF:
f(x,y)
f(y | x)
g(x)
for g(x) > 0
Independence: f(x,y) = g(x)h(y) and f(x|y) = g(x)
Chapter 4
x
x f(x)
and = E(X) =
x f(x) dx
g(X)
= E[g(X)] =
x
g(x) f(x)
and g(X)
= E[g(X)] =
g(x) f(x) dx
g(X,Y)
= E[g(X,Y)] =
x y
g(x,y) f(x,y)
and g(X,Y)
= E[g(X,Y)] =
g(x,y) f(x,y) dx dy
Var(X) =
2
2
2
x
(x ) f(x)
and Var(X) =
2
2
2
(x ) f(x) dx
2
2
2
2 2
2
g(X) g(X) g(X)
x
E g(X) g(x) f(x)
2 2
2
g(X) g(X) g(X)
E g(X) g(x) f(x) dx
Cov(X,Y) =
XY X Y X Y
x y
E X Y x y f(x,y)
and
XY X Y X Y
E X Y x y f(x,y) dx dy
XY
X
Y
Corr(X,Y) =
XY
XY
X Y
E[g(X) h(X)] = E[g(X)] E[h(X)]
E[g(X,Y) h(X,Y)] = E[g(X,Y)] E[h(X,Y)]
E(XY) = E(X)E(Y) if X and Y are independent
If a and b are constants, then
E(aX+b) = aE(X) + b
Var(aX + b) =
2 2 2
aX b X
a
= a
2
2
Var(aX + bY) =
2 2 2 2 2
aX bY X Y XY
a b 2ab
Var(a 1
1
2
n
n
2
i i
i 1
a Var(X )
+ i j i j
i j
2 a a Cov(X , X )
n
2
i i
i 1
a Var(X )
+ i j i j
i j
a a Cov(X , X )
for constants a 1
,…,a n
P( - k < X < + k) 1 -
2
k
Chapter 5
Discrete uniform PDF: 1 2 k
f(x;k) 1/ k, for x x ,x ,...,x ;
k
i
i 1
E(X) x / k
k
2
i
i 1
Var(X) x / k
Binomial PDF:
x n x
n
f(x;n,p) p (1 p)
x
for x=0,1,2,…,n; E(X) = np, Var(X) = np(1-p),
n n!
x x!(n x)!
Poisson PDF:
t x
e ( t)
f(x; t)
x!
for x = 0, 1, 2, …;
E(X) t and
Var(X) t
Excel functions:
BINOMDIST(x,n,p,TRUE) finds F(x) for a binomial PDF
POISSON(x, *t,TRUE)t,TRUE) finds F(x) for a Poisson PDF
Chapter 6
Uniform PDF:
for A x B
f(x;A,B) B A
0 otherwise
where
and
2
Var(X)
Normal PDF:
2
2
(x )
2
f(x; , ) e for - x
; E(X)= and Var(X)=
2
Chi-squared PDF:
/ 2 1 x / 2
/ 2
x e for x>
f(x) 2 ( / 2)
0 otherwise
where is a positive integer; E(X) =
and Var(X) = 2
2 2
n
i 2
2 2
i 1
(n 1)S (X X)
has a chi-squared PDF with =n-1 provided random sample from a
normal PDF
t-distribution:
( 1) / 2
2
t
h(t) 1
for - < t <
has a t-distribution provided Z is a standard normal random variable, V a chi-squared
random variable, and Z and V are independent
S / n
has a t-distribution with = n-1 provided random sample is from a normal PDF
Excel functions:
AVERAGE(range) finds the sample mean
CHIDIST(x, ) finds 1-F(x) for a chi-square PDF
CHIINV(prob., ) finds x in P(X>x) for a chi-square PDF
COUNTIF(range,”condition"
finds the # of times a condition has been satisfied
NORMDIST(x, , , TRUE) finds F(x) for a normal PDF
NORMINV(prob., , ) finds x in P(X<x) for a normal PDF
STDEV(range) finds the sample standard deviation
TDIST(t, , 1)) finds 1-H(t) for a t-distribution for a positive t
TINV(2 prob., ) finds t in P(T>t) for a t-distribution
VAR(range) finds the sample variance
Chapter 9
/ 2,n 1 / 2,n 1
s s
x t x t
n n
2
/ 2
z
n=
e
2 2 2 2
1 2 1 2
1 2 / 2, 1 2 1 2 / 2,
1 2 1 2
s s s s
x x t x x t
n n n n
where
2
2 2
1 2
1 2
2 2
2 2
1 1 2 2
1 2
s s
n n
s n s n
n 1 n 1
d d
/ 2,n 1 D / 2,n 1
s s
d t d t
n n
/ 2 / 2
2 2
/ 2 / 2
p(1 p) p(1 p)
p z p p z
n z n z
where
2
/ 2
2
/ 2
x (z ) 2
p
n (z )
2
/ 2
2
z p(1 p)
n
e
2
/ 2
2
z
n
4e
if ˆ p 0.
1 1 2 2 1 1 2 2
1 2 / 2 1 2 1 2 / 2
1 2 1 2
p (1 p ) p (1 p ) p (1 p ) p (1 p )
p p z p p p p z
n 2 n 2 n 2 n 2
where
1
1
1
x 1
p
n 2
and
2
2
2
x 1
p
n 2
n
1 n i
i 1
L(x ,...,x , ) f(x ; )
where is the parameter of interest
Chapter 10
Hypothesis test for
Test statistic:
0
x
t
s / n
Critical values for a two-tail test: ±t /2, n-
P-value for a two-tail test: 2P(T>|t|)
Hypothesis test for 1
2
2 2
1 2
1 2 1 2
1 2
s s
t x x ( )
n n
Critical values for a two-tail test: ±t /2,
where
2 2
2 2 2
2 2
1 1 2 2
1 2
1 2 1 2
s n s n
s s
n n n 1 n 1
P-value for a two-tail test: 2P(T>|t|)
Hypothesis test for D
Test statistic:
D
D
d
t
s n
Critical values for a two-tail test: ±t /2, n-
P-value for a two-tail test: 2P(T>|t|)
Hypothesis test for p
0
0 0
p p
z
p (1 p ) / n
where
p x / n
Critical values for a two-tail test: ±z
/
P-value for a two-tail test: 2P(Z>|z|)
Hypothesis test for p 1
-p 2
c c
1 2
p p 0
z
p (1 p )
n n
where 1 1 1
p x / n , 2 2 2
p x / n , and
1 2
c
1 2
x x
p
n n
Critical values for a two-tail test: ±z /
P-value for a two-tail test: 2P(Z>|z|)