Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solved Problems on Numerical Linear Algebra - Assignment 7 | MATH 434, Assignments of Linear Algebra

Material Type: Assignment; Class: Numerical Linear Algebra; Subject: MATHEMATICAL SCIENCES; University: Northern Illinois University; Term: Fall 2004;

Typology: Assignments

Pre 2010

Uploaded on 08/19/2009

koofers-user-idu
koofers-user-idu 🇺🇸

10 documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1 MATH 434 - Numerical Linear Algebra , Fall 2004
SOLUTION OF HOMEWORK 7
1. Chapter 6. #26(a). We know Ax =band will perturb the vector bby δb, where
A=
0.4445 0.4444 .2222
0.4444 0.4445 .2222
.2222 .2222 0.1112
b=
0.6667
0.6667
.3332
, x =
1
1
1
,δb=
104
104
104
and let δxbe the perturbation on x. Since Aδx=δb, using Matlab (see appendix), we have
δx='.3334 .3334 1.3333 (t
and also cond(A) = 10000, and now we want to verify
"δb"
cond(A)"b""δx"
"x"cond(A)·
"δb"
"b"
which is obtained from Theorem 6.6.1 of the textbook. Putting the Matlab values we get
1.7321 ·104
104·11.4142
1.7321 104
·
1.7321104
11.7321 ·1080.8165 1.7321
and the result is verified.
1. Chapter 6. #28 (a). Clearly
Cond(A1) = "A1""(A1)1"="A""A1"=C ond(A)
1. Chapter 6. #28 (b).
(i) Since I=A·A1we have
1 = "I"="A·A1" "A""A1"=Cond(A)
and so Cond(A)1.
(ii) Applying the definition
Cond(AtA) = "AtA""(AtA)1"="AtA""A1(A1)t"="A"2"A1"2=)"A""A1"*2=C ond(A)2
chapter 6 #29(a). Let Obe an orthogonal matrix, we know that OtO=I, and applying the result of the
exercise 28 b (ii) we get
1 = Cond(I) = C ond(OtO) = Cond(O)2
Cond(O) = 1
since Cond(O)0.
chapter 6 #29(b) Now suppose Cond(A) = "A"2"A1"= 1.
Define R=A/"A"2, which immediately implies "R"2= 1.
We have
R1="A"2A1 "R1"2="A"2"A1"2= 1
and also, for any vector xwith the same size of the matrix A,
"x"2="R1Rx"2 "R1"2"Rx"2 "R"2"x"2="x"2
pf3
pf4

Partial preview of the text

Download Solved Problems on Numerical Linear Algebra - Assignment 7 | MATH 434 and more Assignments Linear Algebra in PDF only on Docsity!

1 MATH 434 - Numerical Linear Algebra , Fall 2004

SOLUTION 1. Chapter 6. OF#26 HOMEW(a). We knoORw KAx (^7) = b and will perturb the vector b by δb, where

A =

  ^00 ..^44454444 00 ..^44444445 −−..^22222222 −. 2222 −. 2222 0. 1112

   b =

  ^00 ..^66676667 −. 3332

   , x =   ^11 1

   , δb =   ^1010 −−^44 10 −^4

  

and let δx be the perturbation on x. Since Aδx = δb, using Matlab (see appendix), we have and also cond(A) = 10000, and now w^ δex w^ =an^ [t .to^3334 verify^.^3334 1.^3333 ]t cond^ ‖δ(Ab‖)‖b‖ ≤^ ‖ ‖δxx‖‖ ≤^ cond(A)^ ·^ ‖ ‖δbb‖‖ which is obtained from Theorem 6.6.1 of the textbook. Putting the Matlab values we get

  1. 7321104 ·· 101 −^4 ≤ 11 .. (^41427321) ≤ 104 · 1. 7321101 −^4 ⇔ 1. 7321 · 10 − (^8) ≤ 0. 8165 ≤ 1. 7321 and the result is verified.

  2. Chapter 6. #28 (a). Clearly Cond(A−^1 ) = ‖A−^1 ‖‖(A−^1 )−^1 ‖ = ‖A‖‖A−^1 ‖ = Cond(A)

  3. Chapter (i) Since 6. I (^) =#28 A · (^) A(b).− (^1) we have

and so Cond(A) ≥ 1.^1 =^ ‖I‖^ =^ ‖A^ ·^ A−^1 ‖^ ≤^ ‖A‖‖A−^1 ‖^ =^ Cond(A) (ii) Applying the definition Cond(AtA) = ‖AtA‖‖(AtA)−^1 ‖ = ‖AtA‖‖A−^1 (A−^1 )t‖ = ‖A‖^2 ‖A−^1 ‖^2 = [‖A‖‖A−^1 ‖]^2 = Cond(A)^2 c exercisehapter 628 #29 b (ii)(a). w (^) eLet get O be an orthogonal matrix, we know that OtO = I, and applying the result of the 1 = Cond(I) ⇒ = CCondond((OO)t O=) 1 = Cond(O)^2 since chapter Cond 6 #29(O) (^) (b)≥ 0. ⇒ Now suppose Cond(A) = ‖A‖ 2 ‖A− (^1) ‖ = 1. Define We ha (^) vRe = A/‖A‖ 2 , which immediately implies ‖R‖ 2 = 1. R−^1 = ‖A‖ 2 A−^1 ⇒ ‖R−^1 ‖ 2 = ‖A‖ 2 ‖A−^1 ‖ 2 = 1 and also, for any vector x with the same size of the matrix A, ‖x‖ 2 = ‖R−^1 Rx‖ 2 ≤ ‖R−^1 ‖ 2 ‖Rx‖ 2 ≤ ‖R‖ 2 ‖x‖ 2 = ‖x‖ 2

and we conclude that ‖Rx‖ 2 = ‖x‖ 2 , which means ‖Rx‖^22 = ‖x‖^22 and so

⇒^ ( Rxxt()RtRxtR −= Ix)txx =⇔ 0 x fortR tallRx x^ = and^ xtx so RtR − I = 0 ⇒ RtR = I and (^) ⇐so RSupp is orthogonalose A = α (^) Oand with A =O ‖tOA ‖= 2 R I (^) ,= α α&=R 0.. By definition

Cond(A) = ‖A‖‖A−^1 ‖ = ‖αO‖‖α−^1 O−^1 ‖ = |α| · (^) |^1 α| · ‖O‖‖O−^1 ‖ = Cond(O) = 1. which completes the proof.

  1. ‖U (^) ‖Chapter∞‖U − (^1) ‖ (^) ∞6.. #30. Let U = (uij ) be a nonsingular upper triangular matrix. Consider Cond(U ) = Since ‖U ‖∞ = 1 max≤i≤n∑ j=1^ n |uij | w impliese have ‖U ‖∞ ≥ max{uii} and if we denote uij the elements of U −^1 we know that uii = 1 /uii and this ‖U −^1 ‖∞ ≥ max{ 1 /uii} = (^) min^1 {uii} and so we have Cond(U ) = ‖U ‖∞‖U −^1 ‖∞ ≥ max{uii} · (^) min^1 {uii}.

are Fitsurthermore, elements u^ thisii and,^ result as ais classical^ valid^ for result^ any^ consisten ‖O‖ ≥ |λt^ |norm, for ev^ eryas^ w eigene^ willv^ aluesshow. λ^ Sinceof U ,^ thewe^ geteigenvalues^ λi^ of^ U ‖U ‖ ≥ uii ∀ i ⇒ ‖U ‖ ≥ max{uii} and since the eigenvalues μi of U −^1 are μi = 1 /uii, we have ‖U −^1 ‖ ≥ | (^) u^1 ii | ∀ i ⇒ ‖U ‖ ≥ (^) min^1 {uii} and this two last results imply Cond(U ) = ‖U ‖‖U −^1 ‖ ≥ max{uii} · (^) min^1 {uii}. For example, define the matrix Un = LnLt n, where

Ln =

      

...^1 ...^2 ...^3 ...

1 2 3 ... n

      

and so we have Cond(Un) = Cond(LnLt n) = Cond(Ln)^2 ≥ (n/1)^2 = n^2

  1. Chapter 6. #34 (a) Computing the inverse of A 2

C >> h A a = p [ t 0 e. r 0 0 6 0. 0 P 1 , r 1 o , 1 b ; 3 le , 1 m , 1 9 ; 1. , 2 , 3 ];

b fo=r[ 2 i=. (^010) : 301 ; 3 ; 3 ]; end^ p(i)=i; B x 1 = = f asoctlovrelluu(pA(B);,p,b); [ xB 2 , p=] s =o (^) lfvaeclutopr(lBup,p(A,b));;

x 1 > =x 1 03 .. (^3333333509111111019974784609) ^ - >^1 .x^323349444495980 x 20 =. 33330111100370

-^31 ..^3333335499141414149978013478

1 >. 0 aeb-s 010 (A* x* 1 - b) =

  1. 789039094449320
  2. 04614086890342

abs(A*x 2 - b)= 1. 0 e- 015 *

  1. 444089020985006
  2. 88817841970013 The residual is 5 orders of magnitude smaller with partial pivoting.

C >> h A a p =[ t 1 e , r 1 / 6 2. , 1 P / 3 r ; o 1 / b 2 l , e 1 m / 3 , 1 2 / 7 4 ;. 1/3,1/4,1/5]

A = 01 .. 5000000000000000000000000000 00 .. 3530303030303030303030303030 00 .. 2353030303030303030303030303

b=[ 10 ;. 13 ;^313 ]^33333333333 0.^25000000000000 0.^20000000000000 b = (^11) 1

The residual is 5 orders of magnitude smaller with partial pivoting.

C >> h A a p =[ t 1 e , r 1 / 6 2. , 1 P / 3 r ; o 1 / b 2 l , e 1 m / 3 , 1 2 / 4 7 ;. 1/3,1/4,1/5]

A = 01 .. 5000000000000000000000000000 00 .. 3530303030303030303030303030 00 .. 2353030303030303030303030303

b=[ 10 ;. 13 ;^313 ]^33333333333 0.^25000000000000 0.^20000000000000 b = (^11) x=(A^1 \b) x = (^3) - 2. (^040). 00000000000000000000000211

  1. 00000000000010

deltaA =[ 1 , 1 / 2 , 1 / 3 + 0. 00003 ; 1 / 2 , 1 / 3 , 1 / 4 ; 1 / 3 , 1 / 4 , 1 / 5 ] deltaA = 10 .. 0500000000000000000000000000 00 .. 5303030303030303030303030303 00 .. 3235033060030303030303303003

  1. 33333333333333 0. 25000000000000 0. 20000000000000

de>l (^) tdaexl t=a x=delta 2 A. 9 \b 9190728344492

  • 2293 .. 9976370622492173831747997627

an>s c=o nd 0 (.A 01 ) 0 *n 04 or 8 m 79 (A 66 - deltaA 1481 )/norm(A)-norm(dx)/norm(deltax)

Which is positive as expected. Inequality verified.