


Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Assignment; Class: Numerical Linear Algebra; Subject: MATHEMATICAL SCIENCES; University: Northern Illinois University; Term: Fall 2004;
Typology: Assignments
1 / 4
This page cannot be seen from the preview
Don't miss anything!
SOLUTION 1. Chapter 6. OF#26 HOMEW(a). We knoORw KAx (^7) = b and will perturb the vector b by δb, where
A =
^00 ..^44454444 00 ..^44444445 −−..^22222222 −. 2222 −. 2222 0. 1112
b =
^00 ..^66676667 −. 3332
, x = ^11 1
, δb = ^1010 −−^44 10 −^4
and let δx be the perturbation on x. Since Aδx = δb, using Matlab (see appendix), we have and also cond(A) = 10000, and now w^ δex w^ =an^ [t .to^3334 verify^.^3334 1.^3333 ]t cond^ ‖δ(Ab‖)‖b‖ ≤^ ‖ ‖δxx‖‖ ≤^ cond(A)^ ·^ ‖ ‖δbb‖‖ which is obtained from Theorem 6.6.1 of the textbook. Putting the Matlab values we get
7321104 ·· 101 −^4 ≤ 11 .. (^41427321) ≤ 104 · 1. 7321101 −^4 ⇔ 1. 7321 · 10 − (^8) ≤ 0. 8165 ≤ 1. 7321 and the result is verified.
Chapter 6. #28 (a). Clearly Cond(A−^1 ) = ‖A−^1 ‖‖(A−^1 )−^1 ‖ = ‖A‖‖A−^1 ‖ = Cond(A)
Chapter (i) Since 6. I (^) =#28 A · (^) A(b).− (^1) we have
and so Cond(A) ≥ 1.^1 =^ ‖I‖^ =^ ‖A^ ·^ A−^1 ‖^ ≤^ ‖A‖‖A−^1 ‖^ =^ Cond(A) (ii) Applying the definition Cond(AtA) = ‖AtA‖‖(AtA)−^1 ‖ = ‖AtA‖‖A−^1 (A−^1 )t‖ = ‖A‖^2 ‖A−^1 ‖^2 = [‖A‖‖A−^1 ‖]^2 = Cond(A)^2 c exercisehapter 628 #29 b (ii)(a). w (^) eLet get O be an orthogonal matrix, we know that OtO = I, and applying the result of the 1 = Cond(I) ⇒ = CCondond((OO)t O=) 1 = Cond(O)^2 since chapter Cond 6 #29(O) (^) (b)≥ 0. ⇒ Now suppose Cond(A) = ‖A‖ 2 ‖A− (^1) ‖ = 1. Define We ha (^) vRe = A/‖A‖ 2 , which immediately implies ‖R‖ 2 = 1. R−^1 = ‖A‖ 2 A−^1 ⇒ ‖R−^1 ‖ 2 = ‖A‖ 2 ‖A−^1 ‖ 2 = 1 and also, for any vector x with the same size of the matrix A, ‖x‖ 2 = ‖R−^1 Rx‖ 2 ≤ ‖R−^1 ‖ 2 ‖Rx‖ 2 ≤ ‖R‖ 2 ‖x‖ 2 = ‖x‖ 2
and we conclude that ‖Rx‖ 2 = ‖x‖ 2 , which means ‖Rx‖^22 = ‖x‖^22 and so
⇒^ ( Rxxt()RtRxtR −= Ix)txx =⇔ 0 x fortR tallRx x^ = and^ xtx so RtR − I = 0 ⇒ RtR = I and (^) ⇐so RSupp is orthogonalose A = α (^) Oand with A =O ‖tOA ‖= 2 R I (^) ,= α α&=R 0.. By definition
Cond(A) = ‖A‖‖A−^1 ‖ = ‖αO‖‖α−^1 O−^1 ‖ = |α| · (^) |^1 α| · ‖O‖‖O−^1 ‖ = Cond(O) = 1. which completes the proof.
are Fitsurthermore, elements u^ thisii and,^ result as ais classical^ valid^ for result^ any^ consisten ‖O‖ ≥ |λt^ |norm, for ev^ eryas^ w eigene^ willv^ aluesshow. λ^ Sinceof U ,^ thewe^ geteigenvalues^ λi^ of^ U ‖U ‖ ≥ uii ∀ i ⇒ ‖U ‖ ≥ max{uii} and since the eigenvalues μi of U −^1 are μi = 1 /uii, we have ‖U −^1 ‖ ≥ | (^) u^1 ii | ∀ i ⇒ ‖U ‖ ≥ (^) min^1 {uii} and this two last results imply Cond(U ) = ‖U ‖‖U −^1 ‖ ≥ max{uii} · (^) min^1 {uii}. For example, define the matrix Un = LnLt n, where
Ln =
1 2 3 ... n
and so we have Cond(Un) = Cond(LnLt n) = Cond(Ln)^2 ≥ (n/1)^2 = n^2
b fo=r[ 2 i=. (^010) : 301 ; 3 ; 3 ]; end^ p(i)=i; B x 1 = = f asoctlovrelluu(pA(B);,p,b); [ xB 2 , p=] s =o (^) lfvaeclutopr(lBup,p(A,b));;
x 1 > =x 1 03 .. (^3333333509111111019974784609) ^ - >^1 .x^323349444495980 x 20 =. 33330111100370
-^31 ..^3333335499141414149978013478
1 >. 0 aeb-s 010 (A* x* 1 - b) =
abs(A*x 2 - b)= 1. 0 e- 015 *
b=[ 10 ;. 13 ;^313 ]^33333333333 0.^25000000000000 0.^20000000000000 b = (^11) 1
The residual is 5 orders of magnitude smaller with partial pivoting.
b=[ 10 ;. 13 ;^313 ]^33333333333 0.^25000000000000 0.^20000000000000 b = (^11) x=(A^1 \b) x = (^3) - 2. (^040). 00000000000000000000000211
deltaA =[ 1 , 1 / 2 , 1 / 3 + 0. 00003 ; 1 / 2 , 1 / 3 , 1 / 4 ; 1 / 3 , 1 / 4 , 1 / 5 ] deltaA = 10 .. 0500000000000000000000000000 00 .. 5303030303030303030303030303 00 .. 3235033060030303030303303003
de>l (^) tdaexl t=a x=delta 2 A. 9 \b 9190728344492
an>s c=o nd 0 (.A 01 ) 0 *n 04 or 8 m 79 (A 66 - deltaA 1481 )/norm(A)-norm(dx)/norm(deltax)
Which is positive as expected. Inequality verified.