



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
The steps to calculate the limits of the functions sin(x) and cos(x) as x approaches 0 using numerical, geometric, and algebraic methods. It also includes the use of fermat's definition of derivatives and the squeeze theorem. Taken from a university mathematics course, specifically math 1501.
Typology: Assignments
1 / 5
This page cannot be seen from the preview
Don't miss anything!
Derivative of
x
sin x
sin
lim
0
x
x
x
x
x
x
sin x
1
sin
lim
0
x
x
x
x
sin x
sin
lim
0
x
x
x
2
hOB r OB BC
(cos( ) 1 )
(cos 1 )
lim
2
0
h h
h
h
2 2
2 2
h h
(cos( ) 1 )
sin
lim
cos( ) 1
lim
2
0 0
h h
h
h
h
h h
cos( ) 1
lim
sin( )
lim( sin( )) lim
0 0 0
h h
h
h
h h h
x
dx
d x
cos
sin
f ( x )sin x
h
0
h
0
h
0
h
0
h h
0 0
0
h
h h
0 0
0
h
0
h
x x x
dx
df
sin 0 cos 1 cos
f ( x )sin x
x
dx
df
f ( x ) cos