Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solution manual 5th edition communication signals, Study notes of Electric Machines

Solution manual 5th edition communication signals

Typology: Study notes

2016/2017
On special offer
50 Points
Discount

Limited-time offer


Uploaded on 02/16/2017

hussainqa
hussainqa 🇨🇦

2

(1)

1 document

1 / 245

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Copyright©2009JohnWiley&Sons,Inc.AllRightsReserved.
Solutions Manual for:
Communications Systems,
5th edition
by
Karl Wiklund, McMaster University,
Hamilton, Canada
Michael Moher, Space-Time DSP
Ottawa, Canada
and
Simon Haykin, McMaster University,
Hamilton, Canada
Published by Wiley, 2009.
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64
Discount

On special offer

Partial preview of the text

Download Solution manual 5th edition communication signals and more Study notes Electric Machines in PDF only on Docsity!

Solutions Manual for:

Communications Systems,

th

edition

by

Karl Wiklund, McMaster University,

Hamilton, Canada

Michael Moher, Space-Time DSP

Ottawa, Canada

and

Simon Haykin, McMaster University,

Hamilton, Canada

Published by Wiley, 2009.

Chapter 2

2.1 (a)

( ) cos(2 ) , 2 2

c

c

T T

g t A f t t

f T

We can rewrite the half-cosine as:

cos(2 (^) c ) rect

t A f t T

Using the property of multiplication in the time-domain:

[ ]

1 sin( ) ( ) ( ) 2

c c

G f G f G f

fT f f f f AT fT

Writing out the convolution:

[ ]

sin( ) ( ) ( ( ) ( ( ) 2

sin( ( ) ) sin( ( ) ) 1

2 2

cos( ) cos( )

2 1 1

2 2

c c

c c c c c

AT T

G f f f f f d T

A f f T f f T f f f f f T

A fT fT

f f T T

−∞

⎝ +^ − ⎠

(b)By using the time-shifting property:

0 0 0 ( ) exp( 2 ) 2

cos( ) cos( ) ( ) exp( ) 2 1 1

2 2

T

g t t j ft t

A fT fT G f j fT

f f T T

R

( )( )

( )

( ) exp( )sin(2 )u( )

exp( )u( ) sin(2 )

c

c

c c

c c

g t t f t t

t t f t

G f f f f f j f j

j j f f j f f

⎣ +^ −^ +^ + ⎦

2.3 (a)

[ ]

[ ]

( ) rect 2

( ) rect rect

e o

e

e

o

o

g t g t g t

g t g t g t

t g t A T

g t g t g t

t T t T

g t A T T

⎝ ⎝^ ⎠^ ⎝^ ⎠⎠

(b)

By the time-scaling property g(-t) R G(-f)

[ ]

[ ]

[ ]

[ ]

sinc( ) exp( 2 ) sinc( ) exp( 2 ) 2

sinc( ) cos( )

sinc( ) exp( 2 ) sinc( ) exp( 2 ) 2

sinc( ) sin( )

e

o

G f G f G f

fT j fT fT j fT

fT fT

G f G f G f

fT j fT fT j fT

j fT fT

π π

π

π π

π

2.6 (a)

If g(t) is even and real then


( ) [ ( ) ( )]

( ) is all real

G f G f G f

G f G f

G f G f

G f

If g(t) is odd and real then


( ) [ ( ) ( )]

( ) must be all imaginary

G f G f G f

G f G f G f

G f G f

G f G f

G f

(b)

The previous step can be repeated n times so:

( )

( )

But each factor ( 2 ) represents another differentiation.

Replacing with

n n n

n n n

n n n

d j ft G t g f df

j ft

j t G t g f

g h

j t h t H f

R

R

R

[ ]

and ( ) ( ) ( ) ( )

g t g t g t

g t g t G f G f

[ ]

and ( ) ( ) ( ) ( )

g t g t g t

g t g t G f G f

( 2 ) ( ) ( ) by duality

d j t G t g f df

j d t G t g f df

R

R

(c)

Let

( ) ( ) ( ) and ( ) ( ) 2

n n j n h t t g t H f G f

( ) ( ) (0) (0) 2

n j n h t dt H G π

−∞

(d)

1 1

2 2

g t G f

g t Gf

R

R

1 2 1 2

1 2 1 2

1 2

g t g t G G f d

g t g t G G f d

G G f d

−∞ ∞

−∞ ∞

−∞

R

R

(e)

1 2 1 2

1 2

1 2 1 2

1 2 1 2

g t g t G G f d

g t g t dt G

g t g t dt G G d

g t g t dt G G d

−∞ ∞

−∞ ∞ ∞

−∞ −∞ ∞ ∞

−∞ −∞

∫ ∫

∫ ∫

R

R

R

R

2.7 c)

2 2 2

2 2 2 2

2

sin ( ) 4 ( )

sin ( )

j f G f f G f

fT f AT fT

A

fT T

A

T

The second derivative of the triangular pulse is plotted as:

Integrating the absolute value of the delta functions gives:

2

2

2 2 2

d g t A dt dt T

d g t j f G f dt dt

π

−∞

−∞

2.8. (a)

1 2 1 2

2 1

( ) ( ) by the commutative property of multiplication

g t g t G f G f

G f G f

R

b)

[ ] [ ]

[ ] [ ]

[ ] [ ]

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

Because multiplication is commutative, the order of the multiplication

doesn't matter.

g f g f g f G f G f G f

G f G f G f G f G f G f

G f G f G f g f g f g f

R

R

c)

Taking the Fourier transform gives:

1 [^2 3 ]

1 2 2 3 1 2 1 2

Multiplication is distributive so:

G f G f G f

G f G f G f G f g t g t g t g t

+ R +

2.11 a) Given a rectangular function:

( ) rect

t g t T T

, for which the area under g(t) is

always equal to 1, and the height is 1/T.

rect sinc( )

t fT T T

R

Taking the limits:

0

0

lim rect ( )

lim sinc( ) 1

T

T

t t T T

fT T

b)

( ) sgn( ) 2 2

By duality:

G f f

G f t j t

j g t t t

R

( ) 2 sinc(2 )

2 sinc(2 ) rect 2

g t W Wt

f W Wt W

R

lim 2 sinc(2 ) ( )

lim rect 1 2

W

W

W Wt t

W

→∞

→∞

2.13. a) By the differentiation property:

( )

2

2 2

2 ( ) exp( 2 )

( ) exp( 2 ) 4

i i i

i i i

j f G f k j ft

G f k j ft f

b)the slope of each non-flat segment is:

b a

A

t t

[ ]

( )

[ ]

2 2

2 2

( ) exp( 2 ) exp( 2 ) exp( 2 ) exp( 2 ) 4

cos(2 ) cos(2 ) 2

b a a b b a

b a b a

A

G f j ft j ft j ft j ft f t t

A

ft ft f t t

⎛ ⎞⎛^ ⎞

But: (^) [ ]

sin( ( ))sin( ( )) cos(2 ) cos(2 ) 2

π f t b − ta π f tb + ta = π fta − π ftb by a trig identity.

( ) (^2 2) [ sin( ( )) sin( ( ))] ( )

b a b a b a

A

G f f t t f t t f t t

2.14 a) let g(t) be the half cosine pulse of Fig. P2.1a, and let g(t-t 0 ) be its time-shifted

counterpart in Fig.2.1b

( )( )

( )( )

2

*^2 0 0 0 0

*^2 0 0

( ) exp( 2 ) ( ) exp( 2 ) ( ) exp( 2 ) exp( 2 )

( ) exp( 2 ) ( ) exp( 2 ) ( )

G f G f

G f

G f j ft G f j ft G f j ft j ft

G f j ft G f j ft G f

2.14 b)Cont’d

By rearranging the previous expression, and summing over a common denominator, we

get:

( )

( )

2 2 2

2 2 2 2 2

2 2 2

(^2 4 ) 2 2 4

2 2 2

2 2 2 2

cos ( )

cos ( )

cos ( )

A T fT

T

f T

A T fT

T

T f T

A T fT

T f

π π π π π π

⎣ ⎝^ ⎠ ⎦

= ⎢^ ⎥

2.15 a)The Fourier transform of

dg t j fG f dt

R π

Let

dg t g t dt

By Rayleigh’s theorem:

2 2 g t ( ) dt G f ( ) df

∞ ∞

−∞ −∞

∫ ∫

( )

( )

( )

( )

( )

2 2 2 2 2 2 2 2

2 2 *

2 2 2

2 2 * *

2 2 2

2

2 2 *

t g t dt f G f df W T

g t dt

t g t dt g t g t dt

g t dt

t g t g t tg t g t dt

g t dt

d t g t g t dt dt

g t g t dt

π

π

π

∫ ∫

∫ ∫

Using integration by parts, we can show that:

2 2

2 2 2

d t g t dt g t dt

W T

WT

∞ ∞

−∞ −∞

∫ ∫

Given:

2 x t ( ) dt and h t ( ) dt , which implies that h t dt ( )

∞ ∞ ∞

−∞ −∞ −∞

∫ ∫ ∫

However, if

2 2 4 x t ( ) dt then X ( f ) df and X ( f ) df

∞ ∞ ∞

−∞ −∞ −∞

∫ ∫ ∫

. This result also

applies to h(t).

Y ( f ) = H ( f ) X ( f )

(^2) * *

2 2

2 2 4 4

2

Y f df X f H f X f H f df

X f H f df

Y f df X f df H f df

Y f df

∞ ∞

−∞ −∞ ∞

−∞

∞ ∞ ∞

−∞ −∞ −∞

−∞

∫ ∫

∫ ∫ ∫

By Rayleigh’s theorem:

2 2 Y ( f ) df y t ( ) dt

∞ ∞

−∞ −∞

∫ ∫

2 y t ( ) dt

−∞

The transfer function of the summing block is: H (^) 1 ( f ) = (^) [ 1 − exp( − j 2 π fT )].

The transfer function of the integrator is: (^2)

H f

j π f

These elements are cascaded :

( ) ( )

( )

[ ]

( )

[ ]

1 2 1 2

2 2

2

1 exp( 2 ) 2

1 2 exp( 2 ) exp( 4 ) 2

H f H f H f H f H f

j fT f

j fT j fT f