




























































































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Solution manual 5th edition communication signals
Typology: Study notes
1 / 245
This page cannot be seen from the preview
Don't miss anything!
On special offer
Chapter 2
2.1 (a)
( ) cos(2 ) , 2 2
c
c
g t A f t t
f T
We can rewrite the half-cosine as:
cos(2 (^) c ) rect
t A f t T
Using the property of multiplication in the time-domain:
[ ]
1 sin( ) ( ) ( ) 2
c c
G f G f G f
fT f f f f AT fT
Writing out the convolution:
[ ]
sin( ) ( ) ( ( ) ( ( ) 2
2 2
cos( ) cos( )
2 1 1
2 2
c c
c c c c c
G f f f f f d T
A f f T f f T f f f f f T
A fT fT
f f T T
∞
−∞
∫
(b)By using the time-shifting property:
0 0 0 ( ) exp( 2 ) 2
cos( ) cos( ) ( ) exp( ) 2 1 1
2 2
g t t j ft t
A fT fT G f j fT
f f T T
( )( )
( )
( ) exp( )sin(2 )u( )
exp( )u( ) sin(2 )
c
c
c c
c c
g t t f t t
t t f t
G f f f f f j f j
j j f f j f f
2.3 (a)
[ ]
[ ]
( ) rect 2
( ) rect rect
e o
e
e
o
o
g t g t g t
g t g t g t
t g t A T
g t g t g t
t T t T
g t A T T
(b)
By the time-scaling property g(-t) R G(-f)
[ ]
[ ]
[ ]
[ ]
sinc( ) exp( 2 ) sinc( ) exp( 2 ) 2
sinc( ) cos( )
sinc( ) exp( 2 ) sinc( ) exp( 2 ) 2
sinc( ) sin( )
e
o
G f G f G f
fT j fT fT j fT
fT fT
G f G f G f
fT j fT fT j fT
j fT fT
π π
π
π π
π
2.6 (a)
If g(t) is even and real then
( ) is all real
G f G f G f
G f G f
G f G f
G f
If g(t) is odd and real then
( ) must be all imaginary
G f G f G f
G f G f G f
G f G f
G f G f
G f
(b)
The previous step can be repeated n times so:
( )
( )
But each factor ( 2 ) represents another differentiation.
Replacing with
n n n
n n n
n n n
d j ft G t g f df
j ft
j t G t g f
g h
j t h t H f
[ ]
and ( ) ( ) ( ) ( )
g t g t g t
g t g t G f G f
[ ]
and ( ) ( ) ( ) ( )
g t g t g t
g t g t G f G f
( 2 ) ( ) ( ) by duality
d j t G t g f df
j d t G t g f df
(c)
Let
( ) ( ) ( ) and ( ) ( ) 2
n n j n h t t g t H f G f
( ) ( ) (0) (0) 2
n j n h t dt H G π
∞
−∞
∫
(d)
1 1
2 2
g t G f
g t G − f
1 2 1 2
1 2 1 2
1 2
g t g t G G f d
g t g t G G f d
G G f d
∞
−∞ ∞
−∞ ∞
−∞
∫
∫
∫
(e)
1 2 1 2
1 2
1 2 1 2
1 2 1 2
g t g t G G f d
g t g t dt G
g t g t dt G G d
g t g t dt G G d
∞
−∞ ∞
−∞ ∞ ∞
−∞ −∞ ∞ ∞
−∞ −∞
∫
∫
∫ ∫
∫ ∫
2.7 c)
2 2 2
2 2 2 2
2
sin ( ) 4 ( )
sin ( )
j f G f f G f
fT f AT fT
fT T
The second derivative of the triangular pulse is plotted as:
Integrating the absolute value of the delta functions gives:
2
2
2 2 2
d g t A dt dt T
d g t j f G f dt dt
π
∞
−∞
∞
−∞
∫
∫
2.8. (a)
1 2 1 2
2 1
( ) ( ) by the commutative property of multiplication
g t g t G f G f
G f G f
b)
[ ] [ ]
[ ] [ ]
[ ] [ ]
1 2 3 1 2 3
1 2 3 1 2 3
1 2 3 1 2 3
Because multiplication is commutative, the order of the multiplication
doesn't matter.
g f g f g f G f G f G f
G f G f G f G f G f G f
G f G f G f g f g f g f
c)
Taking the Fourier transform gives:
1 [^2 3 ]
1 2 2 3 1 2 1 2
Multiplication is distributive so:
G f G f G f
G f G f G f G f g t g t g t g t
2.11 a) Given a rectangular function:
( ) rect
t g t T T
, for which the area under g(t) is
always equal to 1, and the height is 1/T.
rect sinc( )
t fT T T
Taking the limits:
0
0
lim rect ( )
lim sinc( ) 1
T
T
t t T T
fT T
→
→
b)
( ) sgn( ) 2 2
By duality:
G f f
G f t j t
j g t t t
( ) 2 sinc(2 )
2 sinc(2 ) rect 2
g t W Wt
f W Wt W
lim 2 sinc(2 ) ( )
lim rect 1 2
W
W
W Wt t
→∞
→∞
2.13. a) By the differentiation property:
( )
2
2 2
2 ( ) exp( 2 )
( ) exp( 2 ) 4
i i i
i i i
j f G f k j ft
G f k j ft f
∑
∑
b)the slope of each non-flat segment is:
b a
t t
[ ]
( )
[ ]
2 2
2 2
( ) exp( 2 ) exp( 2 ) exp( 2 ) exp( 2 ) 4
cos(2 ) cos(2 ) 2
b a a b b a
b a b a
G f j ft j ft j ft j ft f t t
ft ft f t t
But: (^) [ ]
sin( ( ))sin( ( )) cos(2 ) cos(2 ) 2
( ) (^2 2) [ sin( ( )) sin( ( ))] ( )
b a b a b a
G f f t t f t t f t t
2.14 a) let g(t) be the half cosine pulse of Fig. P2.1a, and let g(t-t 0 ) be its time-shifted
counterpart in Fig.2.1b
( )( )
( )( )
2
*^2 0 0 0 0
*^2 0 0
( ) exp( 2 ) ( ) exp( 2 ) ( ) exp( 2 ) exp( 2 )
( ) exp( 2 ) ( ) exp( 2 ) ( )
G f G f
G f
G f j ft G f j ft G f j ft j ft
G f j ft G f j ft G f
2.14 b)Cont’d
By rearranging the previous expression, and summing over a common denominator, we
get:
( )
( )
2 2 2
2 2 2 2 2
2 2 2
(^2 4 ) 2 2 4
2 2 2
2 2 2 2
cos ( )
cos ( )
cos ( )
A T fT
f T
A T fT
T f T
A T fT
T f
π π π π π π
2.15 a)The Fourier transform of
dg t j fG f dt
Let
dg t g t dt
By Rayleigh’s theorem:
2 2 g t ( ) dt G f ( ) df
∞ ∞
−∞ −∞
∫ ∫
( )
( )
( )
( )
( )
2 2 2 2 2 2 2 2
2 2 *
2 2 2
2 2 * *
2 2 2
2
2 2 *
t g t dt f G f df W T
g t dt
t g t dt g t g t dt
g t dt
t g t g t tg t g t dt
g t dt
d t g t g t dt dt
g t g t dt
π
π
π
∫ ∫
∫
∫ ∫
∫
∫
∫
∫
∫
Using integration by parts, we can show that:
2 2
2 2 2
d t g t dt g t dt
∞ ∞
−∞ −∞
∫ ∫
Given:
2 x t ( ) dt and h t ( ) dt , which implies that h t dt ( )
∞ ∞ ∞
−∞ −∞ −∞
∫ ∫ ∫
However, if
2 2 4 x t ( ) dt then X ( f ) df and X ( f ) df
∞ ∞ ∞
−∞ −∞ −∞
∫ ∫ ∫
. This result also
applies to h(t).
Y ( f ) = H ( f ) X ( f )
(^2) * *
2 2
2 2 4 4
2
Y f df X f H f X f H f df
X f H f df
Y f df X f df H f df
Y f df
∞ ∞
−∞ −∞ ∞
−∞
∞ ∞ ∞
−∞ −∞ −∞
∞
−∞
∫ ∫
∫
∫ ∫ ∫
∫
By Rayleigh’s theorem:
2 2 Y ( f ) df y t ( ) dt
∞ ∞
−∞ −∞
∫ ∫
2 y t ( ) dt
∞
−∞
∫
The transfer function of the summing block is: H (^) 1 ( f ) = (^) [ 1 − exp( − j 2 π fT )].
The transfer function of the integrator is: (^2)
H f
These elements are cascaded :
( ) ( )
( )
[ ]
( )
[ ]
1 2 1 2
2 2
2
1 exp( 2 ) 2
1 2 exp( 2 ) exp( 4 ) 2
H f H f H f H f H f
j fT f
j fT j fT f