Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solid Mechanics Formulas Cheat Sheet, Cheat Sheet of Applied Solid Mechanics

This cheat sheet contains a collection of Solid Mechanics formulas

Typology: Cheat Sheet

2019/2020

Uploaded on 10/23/2020

arien
arien 🇺🇸

4.8

(24)

310 documents

1 / 26

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Formulas in Solid Mechanics
Tore Dahlberg
Solid Mechanics/IKP, Linköping University
Linköping, Sweden
This collection of formulas is intended for use by foreign students in the course TMHL61,
Damage Mechanics and Life Analysis, as a complement to the textbook Dahlberg and
Ekberg: Failure, Fracture, Fatigue - An Introduction, Studentlitteratur, Lund, Sweden, 2002.
It may be use at examinations in this course.
Contents Page
1. Definitions and notations 1
2. Stress, Strain, and Material Relations 2
3. Geometric Properties of Cross-Sectional Area 3
4. One-Dimensional Bodies (bars, axles, beams) 5
5. Bending of Beam Elementary Cases 11
6. Material Fatigue 14
7. Multi-Axial Stress States 17
8. Energy Methods the Castigliano Theorem 20
9. Stress Concentration 21
10. Material data 25
Version 03-09-18
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a

Partial preview of the text

Download Solid Mechanics Formulas Cheat Sheet and more Cheat Sheet Applied Solid Mechanics in PDF only on Docsity!

Formulas in Solid Mechanics

Tore Dahlberg

Solid Mechanics/IKP, Linköping University

Linköping, Sweden

This collection of formulas is intended for use by foreign students in the course TMHL61, Damage Mechanics and Life Analysis, as a complement to the textbook Dahlberg and Ekberg: Failure, Fracture, Fatigue - An Introduction, Studentlitteratur, Lund, Sweden, 2002. It may be use at examinations in this course.

Contents Page

  1. Definitions and notations 1
  2. Stress, Strain, and Material Relations 2
  3. Geometric Properties of Cross-Sectional Area 3
  4. One-Dimensional Bodies (bars, axles, beams) 5
  5. Bending of Beam Elementary Cases 11
  6. Material Fatigue 14
  7. Multi-Axial Stress States 17
  8. Energy Methods the Castigliano Theorem 20
  9. Stress Concentration 21
  10. Material data 25

Version 03-09-

1. Definitions and notations

Definition of coordinate system and loadings on beam

Loaded beam, length L , cross section A , and load q ( x ), with coordinate system (origin at the geometric centre of cross section) and positive section forces and moments: normal force N , shear forces T (^) y and T (^) z , torque M (^) x , and bending moments M (^) y , Mz

Notations

Quantity Symbol SI Unit

Coordinate directions, with origin at geometric centre of x , y , z m cross-sectional area A

Normal stress in direction i (= x , y , z ) σ i N/m^2 Shear stress in direction j on surface with normal direction i τ ij N/m^2 Normal strain in direction i ε i Shear strain (corresponding to shear stress τ ij ) γ ij rad Moment with respect to axis i M , Mi Nm Normal force N , P N (= kg m/s 2 ) Shear force in direction i (= y , z ) T , T (^) i N Load q ( x ) N/m Cross-sectional area A m^2 Length L , L 0 m Change of length δ m Displacement in direction x u , u ( x ), u ( x , y ) m Displacement in direction y v , v ( x ), v ( x , y ) m Beam deflection w ( x ) m Second moment of area ( i = y , z ) I , Ii m^4 Modulus of elasticity (Young’s modulus) E N/m^2 Poisson’s ratio ν Shear modulus G N/m^2 Bulk modulus K N/m^2

Temperature coefficient α

x y z

T
T
M M
N

y z

y z

Mx

Tz

M (^) z M (^) y

Mx N

Ty

L
A
q x ( )
K−^1

3. Geometric Properties of Cross-Sectional Area

The origin of the coordinate system O yz is at the geometric centre of the cross section

Cross-sectional area A

d A = area element

Geometric centre (centroid)

e = ζgc = distance from η axis to geometric centre f = ηgc distance from ζ axis to geometric centre

First moment of area

A ’ = the “sheared” area (part of area A )

Second moment of area

Iy = second moment of area with respect to the y axis Iz = second moment of area with respect to the z axis Iyz = second moment of area with respect to the y and z axes

Parallel-axis theorems

First moment of area

Second moment of area

O y

z

e

f

d A

A = ⌠
⌡ A

d A

eA = ⌠ ⌡ A ζ d A

fA = ⌠ ⌡ A η d A

S (^) y = ⌠ ⌡ A

z d A and Sz = ⌠ ⌡ A

y d A

I (^) y = ⌠ ⌡ A z^2 d A

Iz = ⌠ ⌡ A

y^2 d A

I (^) yz = ⌠ ⌡ A yz d A

S η = ⌠ ⌡ A

( z + e ) d A = eA and S ζ = ⌠ ⌡ A

( y + f ) d A = fA

I η = ⌠ ⌡ A

( z + e )^2 d A = I (^) y + e^2 A , I ζ = ⌠ ⌡ A

( y + f )^2 d A = Iz + f^2 A ,

I ηζ = ⌠ ⌡ A ( z + e ) ( y + f ) d A = I (^) yz + efA

Rotation of axes

Coordinate system Ωηζ has been rotated the angle α with respect to the coordinate system O yz

Principal moments of area

I 1 + I 2 = I (^) y + I (^) z

Principal axes

A line of symmetry is always a principal axis

Second moment of area with respect to axes through geometric centre for some symmetric areas (beam cross sections)

Rectangular area, base B , height H

Solid circular area, diameter D

Thick-walled circular tube, diameters D and d

y

z

z

y

d A

I η = ⌠ ⌡ A

ζ^2 d A = I (^) y cos^2 α + Iz sin^2 α − 2 I (^) yz sin α cos α

I ζ = ⌠ ⌡ A η^2 d A = I (^) y sin^2 α + Iz cos^2 α + 2 I (^) yz sin α cos α

I ηζ = ⌠ ⌡ A

ζη d A = ( I (^) yIz ) sin α cos α + I (^) yz (cos^2 α − sin^2 α ) =

I (^) yIz 2

sin 2α + I (^) yz cos 2α

I 1 , 2 =

I (^) y + Iz 2

± R where R =

I (^) yIz 2

2

  • I (^) yz^2

sin 2α =

I (^) yz R

or cos 2α =

I (^) yIz 2 R

y

z

H

B I (^) y =

BH^3

and Iz =

HB^3

y

z

D I (^) y = Iz =

π D^4 64

y

z

d D I (^) y = Iz = π 64

( D^4 − d^4 )

Section modulus W v and section factor K v for some cross sections (at torsion)

Torsion of thin-walled circular tube, radius R , thickness t , where t << R ,

Thin-walled tube of arbitrary cross section A = area enclosed by the tube t ( s ) = wall thickness s = coordinate around the tube

Thick-walled circular tube, diameters D and d ,

Solid axle with circular cross section, diameter D ,

Solid axle with triangular cross section, side length a

Solid axle with elliptical cross section, major axle 2 a and minor axle 2 b

Solid axle with rectangular cross section b by a , where ba

for k Wv and k Kv, see table below

y

z

R t

W v = 2 π R^2 t K v = 2 π R^3 t

t(s)

(s)

Area A

s

W v = 2 At min K v =

4 A^2

s [ t ( s )] −^1 d s

y

z

d D

W v =

π 16

D^4 − d^4 D

K v =

π 32

( D^4 − d^4 )

y

z

D

W v =

π D^3 16

K v =

π D^4 32

y

z

a a / 2 a / 2 W v =^

a^3 20

K v =

a^4 √ 3

y

z

2 a

2 b W v =

π 2

a b^2 K v =

π a^3 b^3 a^2 + b^2

y

z

a

b

W v = k Wv a^2 b K v = k Kv a^3 b

Factors k Wv and k Kv for some values of ratio b / a (solid rectangular cross section)

b / a k Wv k Kv

Bending of beam

Relationships between bending moment M (^) y = M ( x ), shear force T (^) z = T ( x ), and load q ( x ) on beam

Normal stress I (here I (^) y ) = second moment of area (see Section 12.2)

Maximum bending stress

W b = section modulus (in bending)

Shear stress SA’ = first moment of area A ’ (see Section 12.2) b = length of line limiting area A ’ τgc = shear stress at geometric centre μ = the Jouravski factor The Jouravski factor μ for some cross sections

rectangular 1. triangular 1. circular 1. thin-walled circular 2. elliptical 1. ideal I profile A / A web

d T ( x ) d x

= − q ( x ) ,

d M ( x ) d x

= T ( x ) , and

d^2 M ( x ) d x^2

= − q ( x )

σ =

N
A

Mz I

| σ | (^) max =

| M |

Wb

where Wb =

I

| z | (^) max

τ =

TSA ’

Ib

τgc = μ

T
A

Non-homogeneous boundary conditions (a) Displacement δ prescribed

(b) Slope Θ prescribed

(c) Moment M 0 prescribed

(d) Force P prescribed

Beam on elastic bed

Differential equation

EI = constant bending stiffness k = bed modulus (N/m 2 ) Solution

Boundary conditions as given above

Beam vibration

Differential equation EI = constant bending stiffness m = beam mass per metre (kg/m) t = time Assume solution w ( x,t ) = X ( x )⋅ T ( t ). Then the standing wave solution is

where μ^4 = ω^2 m / EI Boundary conditions (as given above) give an eigenvalue problem that provides the eigenfrequencies and eigenmodes (eigenforms) of the vibrating beam

w (*) = δ

x x=L

x (^) x=L

O
z O
M 0 M 0

P x^ x=L P

(a)
(b)
(c)
(d)

d d x

w (*) = Θ

− EI

d^2 d x^2

w (*) = M 0

− EI

d^3 d x^3

w (*) = P

EI

d^4 d x^4

w ( x ) + kw ( x ) = q ( x )

w ( x ) = w part( x ) + w hom( x ) where

w hom( x ) = { C 1 cos (λ x ) + C 2 sin (λ x )} eλ x^ + { C 3 cos (λ x ) + C 2 sin (λ x )} e − λ x^ ; λ^4 =

k 4 EI

EI
∂^4

x^4

w ( x , t ) + m

∂^2

t^2

w ( x , t ) = q ( x , t )

T ( t ) = e i ω t^ and X ( x ) = C 1 cosh (μ x ) + C 2 cos (μ x ) + C 3 sinh (μ x ) + C 4 sin (μ x )

Axially loaded beam, stability, the Euler cases

Beam axially loaded in tension Differential equation

N = normal force in tension ( N > 0)

Solution

New boundary condition on shear force (other boundary conditions as given above)

Beam axially loaded in compression Differential equation

P = normal force in compression ( P > 0)

Solution

New boundary condition on shear force (other boundary conditions as given above)

Elementary cases: the Euler cases ( P c is critical load)

Case 1 Case 2a Case 2b Case 3 Case 4

EI

d^4 d x^4

w ( x ) − N

d^2 d x^2

w ( x ) = q ( x )

w ( x ) = w part( x ) + w hom( x ) where

w hom( x ) = C 1 + C 2 √

N
EI

x + C 3 sinh

√

N
EI

x

  • C 4 cosh

√

N
EI

x

T (*) = − EI

d 3 d x^3

w (*) + N d d x

w (*)

EI

d^4 d x^4

w ( x ) + P d^2 d x^2

w ( x ) = q ( x )

w ( x ) = w part( x ) + w hom( x ) where

w hom( x ) = C 1 + C 2 √

P
EI

x + C 3 sin

√

P
EI

x

  • C 4 cos

√

P
EI

x

T (*) = − EI

d 3 d x^3

w (*) − P

d d x

w (*)

P
L, EI L, EI
P
L, EI
P
L, EI
P
L, EI
P

P c =

π^2 EI 4 L^2

P c =

π^2 EI L^2

P c =

π^2 EI L^2

P c =

2.05 π^2 EI L^2

P c =

4 π^2 EI L^2

Simply supported beam

Load applied at x = α L (α < 1), β = 1 −α

w ( x ) =

PL^3
6 EI

β

( 1 − β^2 )

x L

x^3 L^3

for

x L

≤ α

x z w(x) L, EI

L L
P +^ = 1

wL ) =

PL^3 3 EI

α^2 β^2. When α > β one obtains

w max = w

L

√

1 − β^2 3

= wL ) 1 + β 3 β √

1 + β 3 α

d d x w (^0 ) =^

PL^2 6 EI α β (^1 + β)^

d d x w ( L ) = −^

PL^2 6 EI α β (^1 + α)

x z w(x)^ L, EI

M A M B (^) w ( x ) = L^2 6 EI

  

M A

  

2

x L − 3

x^2 L^2

x^3 L^3

  

  • M B

  

x L

x^3 L^3

  

   d d x w ( 0 ) =

M A L 3 EI

M B L 6 EI

d d x w ( L ) = −

M A L 6 EI

M B L 3 EI

w ( x ) =

ML^2
6 EI

( 1 − 3 β^2 )

x L

x^3 L^3

for

x L

≤ α

x z w(x) L, EI

L L
M

d d x w ( 0 ) = ML 6 EI ( 1 − 3 β^2 ) d d x w ( L ) = ML 6 EI ( 1 − 3 α^2 )

w ( x ) =

QL^3
24 EI

x^4 L^4

x^3 L^3

x L

x z w(x)^ L, EI

Q

w ( L / 2 ) =

5 QL^3 384 EI

d d x w ( 0 ) = −

d d x w ( L ) =

QL^2 24 EI

w ( x ) =

QL^3
180 EI

x^5 L^5

x^3 L^3

x L

d d x

w ( 0 ) =

7 QL^2
180 EI

d d x

w ( L ) = −

8 QL^2
180 EI

x z w(x) L, EI

Q

w ( x ) =

QL^3
180 EI

x^5 L^5

x^4 L^4

x^3 L^3

x L

d d x

w ( 0 ) =

8 QL^2
180 EI

d d x

w ( L ) = −

7 QL^2
180 EI

x z w(x) L, EI

Q

Clamped simply supported beam and clamped clamped beam

Load applied at x = α L (α < 1), β = 1 α Only redundant reactions are given. For deflections, use superposition of solutions for simply supported beams.

x z L, EI

M A
L L
P + = 1
M A =
PL

β ( 1 − β^2 )

x z L, EI

M A M B
M A =
M B

x z L, EI

M A M
L L
+ = 1 M
A =^
M

( 1 − 3 β^2 )

x z

L, EI
M A
Q
M A =
QL

x z L, EI

M A
Q M
A =^
2 QL

x

z

L, EI
M A
L L

P M B M A =^ PL^ α β

2 M

B =^ PL^ α

(^2) β

x

z

L, EI
M A M
L L

M B M A = −^ M^ β (^1 −^3 α )^ M B =^ M^ α (^1 −^3 β )

x z L, EI

M A
Q
M B M A =^ M B =^
QL

x z L, EI

M A Q^ M B M A =^
QL
M B =
QL

Volume factor λ (due to process) Factor λ reducing the fatigue limit due to size of raw material

(a) diameter at circular cross section (b) thickness at rectangular cross section

Volume factor δ (due to geometry) Factor δ reducing the fatigue limits σub and τuv due to loaded volume. Steel with ultimate strength σU = (a) 1500 MPa (b) 1000 MPa (c) 600 MPa (d) 400 MPa (e) aluminium Factor δ = 1 when fatigue notch factor K f > 1 is used.

Fatigue notch factor K (^) f (at stress concentration)

K t = stress concentration factor (see Section 12.8) q = fatigue notch sensitivity factor

Fatigue notch sensitivity factor q

Fatigue notch sensitivity factor q for steel with ultimate strength σU = (a) 1600 MPa (b) 1300 MPa (c) 1000 MPa (d) 700 MPa (e) 400 MPa

(a)
(b)
100mm
50mm
(a)
(b)
(c)
(d)
(e)
Diameter or thickness in mm

K f = 1 + q ( K t − 1 )

(a)
(b)
(c)
(d)
(e)

q

r

Fillet radius in mm

Wöhler diagram

σa i = stress amplitude Ni = fatigue life (in cycles) at stress amplitude σa i

Damage accumulation D

ni = number of loading cycles at stress amplitude σa i Ni = fatigue life at stress amplitude σa i

Palmgren-Miner’s rule

Failure when ni = number of loading cycles at stress amplitude σa i Ni = fatigue life at stress amplitude σa i I = number of loading stress levels

Fatigue data (cyclic, constant-amplitude loading)

The following fatigue limits may be used only when solving exercises. For a real design, data should be taken from latest official standard and not from this table. 1 Material Tension Bending Torsion alternating pulsating alternating pulsating alternating pulsating MPa MPa MPa MPa MPa MPa

Carbon steel 141312-00 110 110 110 170 150 150 100 100 100 141450-1 140 130 130 190 170 170 120 120 120 141510-00 230 141550-01 180 160 160 240 210 210 140 140 140 141650-01 200 180 180 270 240 240 150 150 150 141650 460

Stainless steel 2337-02,

Aluminium SS 4120-02, ; SS 4425-06,

(^1) Data in this table has been collected from B Sundström (editor): Handbok och Formelsamling i Hållfasthetslära, Institutionen för hållfasthetslära, KTH, Stockholm, 1998.

a

log N

a i

D =

ni Ni

i = 1

I (^) ni Ni

σu = ± 270 MPa

σub = ± 110 MPa σu = ± 120 MPa

Principal stresses and principal directions at plane stress state

ψ 1 = angle from x axis (in xy plane) to direction of principal stress σ 1

Strain in direction α (plane state)

ε(α) = normal strain in direction α γ(α) = shear strain of element with normal in direction α

Principal strains and principal directions (plane state)

ψ 1 = angle from x axis (in xy plane) to direction of principal strain ε 1

Principal stresses and principal directions at three-dimensional stress state

The determinant

gives three roots (the principal stresses)

(contains the nine stress components σ ij )

Direction of principal stress σ i ( i = 1, 2, 3) is given by n (^) ix , niy and niz are the elements of the unit and vector n i in the direction of σ i ( T^ means transpose)

σ 1 , 2

σ 1 , 2 = σc ± R =

σ x + σ y 2

σ x − σ y 2

2

  • τ xy^2

sin( 2 ψ 1 ) =

τ xy R

or cos( 2 ψ 1 ) =

σ x − σ y 2 R

ε(α) = ε x cos^2 (α) + ε y sin^2 (α) + γ xy sin(α)cos(α) y

γ(α) = (ε x y − ε x )^ sin(^2 α) + γ xy cos(^2 α)

ε 1 , 2 = εc ± R =

ε x + ε y 2 ±

  

ε x − ε y 2

  

2

  

γ xy 2

  

2

sin( 2 ψ 1 ) =

γ xy 2 R

or cos( 2 ψ 1 ) =

ε x − ε y 2 R

Stress matrix S =

σ x τ xy τ xz τ yx σ y τ yz τ zx τ zy σ z

| S − σ I | = 0

Unit matrix I =

( S − σ i I ) ⋅ n i = 0

n i^ T^ ⋅ n i = 1

Principal strains and principal directions at three-dimensional stress state

Use shear strain The determinant

gives three roots (the principal strains) I = unit matrix Direction of principal strain ε i ( i = 1, 2, 3) is given by nix , niy and niz are the elements of the unit and vector n i in the direction of ε i ( T^ means transpose)

Hooke’s law, including temperature term (three-dimensional stress state)

α = temperature coefficient ∆ T = change of temperature (relative to temperature giving no stress)

Effective stress

The Huber-von Mises effective stress (the deviatoric stress hypothesis)

The Tresca effective stress (the shear stress hypothesis)

ε ij = γ ij / 2 for ij Strain matrix E =

ε x ε xy ε xz ε yx ε y ε yz ε zx ε zy ε z

| E − ε I | = (^0) 

( E − ε i I ) ⋅ n i = 0

n i^ T^ ⋅ n i = 1

εx =

E

[σx − ν(σy + σ z )] + α ∆ T

εy =

E

[σy − ν(σz + σ x )] + α ∆ T

εz =

E

[σz − ν(σx + σ y )] + α ∆ T

γ xy =

τ xy G

γ yz =

τ yz G

γ zx =

τ zx G

σevM^ = (^) √σ x^2 + σ y^2 + σ z^2 − σ x σ y − σ y σ z − σ z σ x + 3 τ xy^2 + 3 τ yz^2 + 3 τ zx^2

√

{(σ 1 − σ 2 )^2 + (σ 2 − σ 3 )^2 + (σ 3 − σ 1 )^2 }

σeT^ = max [ | σ 1 − σ 2 | , | σ 2 − σ 3 | , | σ 3 − σ 1 | ] = σmaxpr^ − σminpr^ (pr = principal stress)