Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Shigley’s MED Chapter 1 Introduction to Mechanical Engineering Design Solution Manual, Lecture notes of Mechanical Systems Design

Shigley's Mechanical Engineering Design 10th Edition, Chapter 1 problems solution, Michael A. Latcha, PhD. ME 486

Typology: Lecture notes

2020/2021

Uploaded on 03/30/2021

unknown user
unknown user 🇺🇸

1 / 12

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Shigley’s MED, 10
th
edition Chapter 1 Solutions, Page 1/12
Chapter 1
Problems 1-1 through 1-6 are for student research. No standard solutions are provided.
1-7 From Fig. 1-2, cost of grinding to ± 0.0005 in is 270%. Cost of turning to ± 0.003 in is
60%.
Relative cost of grinding vs. turning = 270/60 = 4.5 times Ans.
______________________________________________________________________________
1-8 C
A
= C
B
,
10 + 0.8 P = 60 + 0.8 P 0.005 P
2
P
2
= 50/0.005 P = 100 parts Ans.
______________________________________________________________________________
1-9 Max. load = 1.10 P
Min. area = (0.95)
2
A
Min. strength = 0.85 S
To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be
( )
2
1.10
1.43 .
0.85 0.95
d
n Ans
= =
______________________________________________________________________________
1-10 (a) X
1
+ X
2
:
( ) ( )
1 2 1 1 2 2
1 2 1 2
1 2
error
.
x x X e X e
e x x X X
e e Ans
+ = + + +
= = + +
= +
(b) X
1
X
2
:
(
)
( ) ( )
1 2 1 1 2 2
1 2 1 2 1 2
.
x x X e X e
= + +
= =
(c) X
1
X
2
:
(
)
(
)
1 2 1 1 2 2
1 2 1 2 1 2 2 1 1 2
1 2
1 2 2 1 1 2
1 2
.
x x X e X e
e x x X X X e X e e e
e e
X e X e X X Ans
X X
= + +
= = + +
+ = +
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Shigley’s MED Chapter 1 Introduction to Mechanical Engineering Design Solution Manual and more Lecture notes Mechanical Systems Design in PDF only on Docsity!

Chapter 1

Problems 1-1 through 1-6 are for student research. No standard solutions are provided.

1-7 From Fig. 1-2, cost of grinding to ± 0.0005 in is 270%. Cost of turning to ± 0.003 in is 60%. Relative cost of grinding vs. turning = 270/60 = 4.5 times Ans.


1-8 CA = CB ,

10 + 0.8 P = 60 + 0.8 P − 0.005 P^2

P^2 = 50/0.005 ⇒ P = 100 parts Ans.


1-9 Max. load = 1.10 P Min. area = (0.95)^2 A Min. strength = 0.85 S To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be

2

n d = = Ans


1-10 ( a ) X 1 + X 2 :

1 2 1 1 2 2 1 2 1 2 1 2

error .

x x X e X e e x x X X e e Ans

( b ) X 1 − X 2 :

1 2 1 1 2 2 1 2 1 2 1 2.

x x X e X e e x x X X e e Ans

( c ) X 1 X 2 :

1 2 (^1 1 )(^2 2 )

1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 2

x x X e X e e x x X X X e X e e e e e X e X e X X Ans X X

( d ) X 1 / X 2 : 1 1 1 1 1 1 2 2 2 2 2 2 1 2 2 1 1 1 2 1 2 2 2 2 2 1 2 1 2 1 1 1 1 2 2 2 2 1 2

1 1 then 1 1 1 1

Thus,.

x X e X e X x X e X e X

e e e X e e e e X X e X X X X X x X X e e e Ans x X X X X

+ ^ + 
 +^  ≈^ −^   ≈^  +^  −^ ≈^ +^ −
______________________________________________________________________________

1-11 ( a ) x 1 = 7 = 2.645 751 311 1 X 1 = 2.64 (3 correct digits) x 2 = 8 = 2.828 427 124 7 X 2 = 2.82 (3 correct digits) x 1 + x 2 = 5.474 178 435 8 e 1 = x 1 − X 1 = 0.005 751 311 1 e 2 = x 2 − X 2 = 0.008 427 124 7 e = e 1 + e 2 = 0.014 178 435 8 Sum = x 1 + x 2 = X 1 + X 2 + e = 2.64 + 2.82 + 0.014 178 435 8 = 5.474 178 435 8 Checks ( b ) X 1 = 2.65, X 2 = 2.83 (3 digit significant numbers) e 1 = x 1 − X 1 = − 0.004 248 688 9 e 2 = x 2 − X 2 = − 0.001 572 875 3 e = e 1 + e 2 = − 0.005 821 564 2 Sum = x 1 + x 2 = X 1 + X 2 + e = 2.65 +2.83 − 0.001 572 875 3 = 5.474 178 435 8 Checks


( ) (^ )

3 3

1.006 in. d^ 2.

S

d Ans n d

σ π

Table A-17: d = 1 14 in Ans.

Factor of safety:

( )

3

3

S

n Ans σ π

______________________________________________________________________________

2 + 1 + 3 + 5 + 8 + 12 = 31 (the data is not perfectly normal)


1-

x f f x f x^2 174 6 1044 181656 182 9 1638 298116 190 44 8360 1588400 198 67 13266 2626668 206 53 10918 2249108 214 12 2568 549552 222 6 1332 295704 Σ 197 39126 7789204

Eq. (1-6) 1

198.61 kpsi 197

k i i i

x f x N (^) =

= (^) ∑ = =

Eq. (1-7)

(^2 2) 1 2 2 1 7 789 204^ 197(198.61)^ 9.68 kpsi. 1 197 1

k i i i x

f x N x s Ans N

=

______________________________________________________________________________

1-15 L = 122.9 kcycles and sL =30.3 kcycles

Eq. (1-5) 10 10 10

x L

x x L x z s

μ σ

Thus, x 10 = 122.9 + 30.3 z 10 = L 10

From Table A-10, for 10 percent failure, z 10 = −1.282. Thus,

L 10 = 122.9 + 30.3(−1.282) = 84.1 kcycles Ans.


x f fx fx^2 93 19 1767 164331 95 25 2375 225625 97 38 3686 357542 99 17 1683 166617 101 12 1212 122412 103 10 1030 106090 105 5 525 55125 107 4 428 45796 109 4 436 47524 111 2 222 24642 Σ 136 13364 1315704

Eq. (1-6) 1

13 364 / 136 98.26471 = 98.26 kpsi

k i i i

x f x N (^) =

= (^) ∑ = =

Eq. (1-7)

(^2 2) 1 2 2 1 1 315 704^ 136(98.26471)^ 4.30 kpsi 1 136 1

k i i i x

f x N x s N

=

Note , for accuracy in the calculation given above, x needs to be of more significant figures than the rounded value.

For a normal distribution, from Eq. (1-5), and a yield strength exceeded by 99 percent ( R = 0.99, pf = 0.01), 0.01 0.

x x x

x x x x z s

μ σ

Solving for the yield strength gives

x 0.01 = 98.26 + 4.30 z 0.

From Table A-10, z 0.01 = − 2.326. Thus

x 0.01 = 98.26 + 4.30(− 2.326) = 88.3 kpsi Ans. ______________________________________________________________________________

1-17 Eq. (1-9): R = 1

n i i

R

=

∏ = 0.98(0.96)0.94 = 0. Overall reliability = 88 percent Ans.


Eq. (1-11):

(^2 2 2 2 2 )

d d S

n z n C C σ

Interpolating Table A-10, 1.61 0. 1.6127 Φ ⇒ Φ = 0. 1.62 0.

R = 1 − 0.0534 = 0.9466 Ans.

2 2

1.020 in. / ( / 4) 4 95.

y y y y

S S d S (^) Pn n d Ans P d P S

π σ π π π

( b ) n =1.

2 2 2

z

R = 1 − 0.00015645 = 0.9998 Ans.

1.140 in. y^ 95.

Pn d Ans π S π

______________________________________________________________________________

1-20 μ σ (^) max = σ (^) max = σ (^) a + σ b = 90 + 383 =473 MPa

From footnote 9, p. 25 of text,

max^ (^ )

2 2 1/ 2 2 2 1/ 2 σ^ ˆ (^) σ = σˆ^ σ a + σˆ^ σ b = (8.4 + 22.3 ) =23.83 MPa

max max max max max

C σ σ σ σ

σ σ μ σ

y y y y

S S S S y

C
S

σ σ μ

max

n S^ y Ans σ

Eq. (1-11): ( )

(^2 2 2 2 2 )

d d S

n z n C C σ

From Table A-10, Φ(− 1.635) = 0.

R = 1 − 0.05105 = 0.94895 = 94.9 percent Ans.


1-21 a = 1.500 ± 0.001 in b = 2.000 ± 0.003 in c = 3.000 ± 0.004 in d = 6.520 ± 0.010 in ( a ) w = dabc = 6.520 − 1.5 − 2 − 3 = 0.020 in t (^) w = (^) ∑ t all= 0.001 + 0.003 + 0.004 +0.010 = 0. w = 0.020 ± 0.018 in Ans.

( b ) From part (a), w min = 0.002 in. Thus, must add 0.008 in to d. Therefore,

d = 6.520 + 0.008 = 6.528 in Ans.


1-22 V = xyz , and x = a ± ∆ a , y = b ± ∆ b , z = c ± ∆ c ,

V = abc

V ( a a ) ( b b )( c c )

abc bc a ac b ab c a b c b c a c a b a b c

The higher order terms in ∆ are negligible. Thus,

Vbca + acb + abc

and,.

V bc a ac b ab c a b c a b c Ans V abc a b c a b c

For the numerical values given, V = 1.500 1.875 3.000( ) =8.4375 in^3

1-26 From O-Rings, Inc. (oringsusa.com), Di = 34.52 ± 0.30 mm, d = 3.53 ± 0.10 mm

Do = Di + 2 d = 34.52 + 2 3.53 ( ) =41.58 mm

tD (^) o = (^) ∑ t all = 0.30 + 2 0.10 ( )=0.50 mm

Do = 41.58 ± 0.50 mm Ans.


1-27 From O-Rings, Inc. (oringsusa.com), Di = 5.237 ± 0.035 in, d = 0.103 ± 0.003 in

Do = Di + 2 d = 5.237 + 2 0.103 ( ) =5.443 in

tD (^) o = (^) ∑ t all = 0.035 + 2 0.003 ( ) =0.041 in

Do = 5.443 ± 0.041 in Ans.


1-28 From O-Rings, Inc. (oringsusa.com), Di = 1.100 ± 0.012 in, d = 0.210 ± 0.005 in

Do = Di + 2 d = 1.100 + 2 0.210 ( ) =1.520 in

tD (^) o = (^) ∑ t all = 0.012 + 2 0.005 ( ) =0.022 in

Do = 1.520 ± 0.022 in Ans.


1-29 From Table A-2,

( a ) σ = 150/6.89 = 21.8 kpsi Ans.

( b ) F = 2 /4.45 = 0.449 kip = 449 lbf Ans.

( c ) M = 150/0.113 = 1330 lbf ⋅ in = 1.33 kip ⋅ in Ans.

( d ) A = 1500/ 25.4^2 = 2.33 in^2 Ans.

( e ) I = 750/2.54^4 = 18.0 in^4 Ans.

( f ) E = 145/6.89 = 21.0 Mpsi Ans.

( g ) v = 75/1.61 = 46.6 mi/h Ans.

( h ) V = 1000/946 = 1.06 qt Ans.


1-30 From Table A-2,

( a ) l = 5(0.305) = 1.53 m Ans.

( b ) σ = 90(6.89) = 620 MPa Ans.

( c ) p = 25(6.89) = 172 kPa Ans.

( d ) Z =12(16.4) = 197 cm^3 Ans.

( e ) w = 0.208(175) = 36.4 N/m Ans.

( f ) δ = 0.001 89(25.4) = 0.048 0 mm Ans.

( g ) v = 1 200(0.0051) = 6.12 m/s Ans.

( h ) ∫ = 0.002 15(1) = 0.002 15 mm/mm Ans.

( i ) V = 1830(25.4^3 ) = 30.0 (10^6 ) mm^3 Ans.


1- ( a ) σ = M /Z = 1770/0.934 = 1895 psi = 1.90 kpsi Ans.

( b ) σ = F /A = 9440/23.8 = 397 psi Ans.

( c ) y =Fl^3 / 3 EI = 270(31.5)^3 /[3(30)10^6 (0.154)] = 0.609 in Ans.

( d ) θ = Tl /GJ = 9 740(9.85)/[11.3(10^6 )( π /32)1.00^4 ] = 8.648(10−^2 ) rad = 4.95° Ans.


1- ( a ) σ =F / wt = 1000/[25(5)] = 8 MPa Ans.

( b ) I = bh^3 /12 = 10(25)^3 /12 = 13.0(10^3 ) mm^4 Ans.

( c ) I = π d^4 /64 = π (25.4)^4 /64 = 20.4(10^3 ) mm^4 Ans.

( d ) τ = 16 T / π d^3 = 16(25)10^3 /[ π (12.7)^3 ] = 62.2 MPa Ans.


1-