Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Shigley's Mechanical Engineering Design Solution Manual, Lecture notes of Mechanical Systems Design

All problems solved for Shigley's Mechanical Engineering Design by J. Keith Nisbeth and Richard G. Budynas 9th Edition

Typology: Lecture notes

2020/2021
On special offer
50 Points
Discount

Limited-time offer


Uploaded on 03/30/2021

francyne
francyne 🇺🇸

4.7

(21)

268 documents

1 / 712

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Chapter 1
Problems 1-1 through 1-6 are for student research. No standard solutions are provided.
1-7 From Fig. 1-2, cost of grinding to 0.0005 in is 270%. Cost of turning to 0.003 in is
60%.
Relative cost of grinding vs. turning = 270/60 = 4.5 times Ans.
______________________________________________________________________________
1-8 CA = CB,
10 + 0.8 P = 60 + 0.8 P 0.005 P 2
P 2 = 50/0.005 P = 100 parts Ans.
______________________________________________________________________________
1-9 Max. load = 1.10 P
Min. area = (0.95)2A
Min. strength = 0.85 S
To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be

2
1.10 1.43 .
0.85 0.95
d
nA ns
______________________________________________________________________________
1-10 (a) X1 + X2:

12 11 22
12 1 2
12
error
.
xx X eX e
exx XX
ee Ans



(b) X1 X2:

12 11 22
12 1 2 12
.
xx Xe X e
exx XX ee Ans


(
c) X1 X2:

12 1 1 2 2
12 1 2 12 21 12
12
12 21 1 2
12
.
xx X e X e
exxXX XeXeee
ee
X
eXeXX Ans
XX






Chapter 1 Solutions - Rev. B, Page 1/6
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64
Discount

On special offer

Partial preview of the text

Download Shigley's Mechanical Engineering Design Solution Manual and more Lecture notes Mechanical Systems Design in PDF only on Docsity!

Chapter 1

Problems 1-1 through 1-6 are for student research. No standard solutions are provided.

1-7 From Fig. 1-2, cost of grinding to  0.0005 in is 270%. Cost of turning to  0.003 in is

60%.

Relative cost of grinding vs. turning = 270/60 = 4.5 times Ans.


1-8 CA = CB ,

10 + 0.8 P = 60 + 0.8 P  0.005 P

2

P

2 = 50/0.005  P = 100 parts Ans.


1-9 Max. load = 1.10 P

Min. area = (0.95)

2 A

Min. strength = 0.85 S To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be

2

n d   Ans

______________________________________________________________________________

1-10 ( a ) X 1 + X 2 :

1 2 1 1 2 2

1 2 1 2

1 2

error

x x X e X e

e x x X X

e e Ans

( b ) X 1  X 2 :

1 2 1 1 2 2

x x X e X e

e x x X X e e Ans

( c ) X 1 X 2 :

1 2 ^1 1 ^2 2 

1 2 1 2 1 2 2 1 1 2

1 2 1 2 2 1 1 2 1 2

x x X e X e

e x x X X X e X e e e

e e X e X e X X Ans X X

Chapter 1 Solutions - Rev. B, Page 1/

( d ) X 1 / X 2 :

1 1 1 1 1 1

2 2 2 2 2 2 1 2 2 1 1 1 2 1

2 2 2 2 1 2 1

1 1 1 1 2

2 2 2 1 2

1 1 then 1 1 1 1

Thus,.

x X e X e X

x X e X e X

e e e X e e e (^) 2

2

e

X X e X X X X

x X X e e e Ans x X X X X

 ^  

 ^  ^    ^   ^  ^ 

X

______________________________________________________________________________

1-11 ( a ) x 1 = 7 = 2.645 751 311 1

X 1 = 2.64 (3 correct digits)

x 2 = 8 = 2.828 427 124 7

X 2 = 2.82 (3 correct digits)

x 1 + x 2 = 5.474 178 435 8

e 1 = x 1  X 1 = 0.005 751 311 1

e 2 = x 2  X 2 = 0.008 427 124 7

e = e 1 + e 2 = 0.014 178 435 8

Sum = x 1 + x 2 = X 1 + X 2 + e

= 2.64 + 2.82 + 0.014 178 435 8 = 5.474 178 435 8 Checks

( b ) X 1 = 2.65, X 2 = 2.83 (3 digit significant numbers)

e 1 = x 1  X 1 =  0.004 248 688 9

e 2 = x 2  X 2 =  0.001 572 875 3

e = e 1 + e 2 =  0.005 821 564 2

Sum = x 1 + x 2 = X 1 + X 2 + e

= 2.65 +2.83  0.001 572 875 3 = 5.474 178 435 8 Checks


  ^ 

3

3

0.799 in. d 2.

S

d A n d

 

     ns

Table A-17: d = 7 8

in Ans.

Factor of safety:

3

3 7 8

S

n A

   ns

______________________________________________________________________________

1-13 Eq. (1-5): R =

1

n

i i

R

Overall reliability = 88 percent Ans.


Chapter 1 Solutions - Rev. B, Page 2/

w max = 0.05 in, w min = 0.004 in

0.05 0. 0.027 in 2

w =

Thus,  w = 0.05  0.027 = 0.023 in, and then, w = 0.027  0.023 in.

1.569 in

a b c

a

a

w =

tw =  0.023 = t all ^ t a^ + 0.002 + 0.005^ ^ ta^ = 0.016 in

Thus, a = 1.569  0.016 in Ans.

______________________________________________________________________________

1-17 DoDi  2 d  3.734  2 0.139 4.012 in

tD (^) o  (^)  t all  0.028  2 0.004  0.036 in

Do = 4.012  0.036 in Ans.


1-18 From O-Rings, Inc. (oringsusa.com), Di = 9.19  0.13 mm, d = 2.62  0.08 mm

DoDi  2 d  9.19  2 2.62  14.43 mm

tD (^) o  (^)  t all  0.13  2 0.08  0.29 mm

Do = 14.43  0.29 mm Ans.


1-19 From O-Rings, Inc. (oringsusa.com), Di = 34.52  0.30 mm, d = 3.53  0.10 mm

DoDi  2 d  34.52  2 3.53   41.58 mm

tD (^) o  (^)  t all  0.30  2 0.10  0.50 mm

Do = 41.58  0.50 mm Ans.


Chapter 1 Solutions - Rev. B, Page 4/

1-20 From O-Rings, Inc. (oringsusa.com), Di = 5.237  0.035 in, d = 0.103  0.003 in

DoDi  2 d  5.237  2 0.103   5.443 in

tD (^) o  (^)  t all  0.035  2 0.003  0.041 in

Do = 5.443  0.041 in Ans.


1-21 From O-Rings, Inc. (oringsusa.com), Di = 1.100  0.012 in, d = 0.210  0.005 in

DoDi  2 d  1.100  2 0.210  1.520 in

tD (^) o  (^)  t all  0.012  2 0.005   0.022 in

Do = 1.520  0.022 in Ans.


1-22 From Table A-2,

( a )  = 150/6.89 = 21.8 kpsi Ans.

( b ) F = 2 /4.45 = 0.449 kip = 449 lbf Ans.

( c ) M = 150/0.113 = 1330 lbf  in = 1.33 kip  in Ans.

( d ) A = 1500/ 25.

2 = 2.33 in

2 Ans.

( e ) I = 750/2.

4 = 18.0 in

4 Ans.

( f ) E = 145/6.89 = 21.0 Mpsi Ans.

( g ) v = 75/1.61 = 46.6 mi/h Ans.

( h ) V = 1000/946 = 1.06 qt Ans.


1-23 From Table A-2,

( a ) l = 5(0.305) = 1.53 m Ans.

( b )  = 90(6.89) = 620 MPa Ans.

( c ) p = 25(6.89) = 172 kPa Ans.

Chapter 1 Solutions - Rev. B, Page 5/

Chapter 2

2-1 From Tables A-20, A-21, A-22, and A-24c,

( a ) UNS G10200 HR: Sut = 380 (55) MPa (kpsi), Syt = 210 (30) Mpa (kpsi) Ans.

( b ) SAE 1050 CD: Sut = 690 (100) MPa (kpsi), Syt = 580 (84) Mpa (kpsi) Ans.

( c ) AISI 1141 Q&T at 540C (1000F): Sut = 896 (130) MPa (kpsi), Syt = 765 (111)

Mpa (kpsi) Ans.

( d ) 2024-T4: Sut = 446 (64.8) MPa (kpsi), Syt = 296 (43.0) Mpa (kpsi) Ans.

( e ) Ti-6Al-4V annealed: Sut = 900 (130) MPa (kpsi), Syt = 830 (120) Mpa (kpsi) Ans.


2-2 ( a ) Maximize yield strength: Q&T at 425C (800F) Ans.

( b )Maximize elongation: Q&T at 650C (1200F) Ans.


2-3 Conversion of kN/m

3 to kg/ m

3 multiply by 1(

3 ) / 9.81 = 102

AISI 1018 CD steel: Tables A-20 and A-

 

 

3 370 10 47.4 kN m/kg. 76.5 102

S (^) y Ans

2011-T6 aluminum: Tables A-22 and A-

 

 

3 169 10 62.3 kN m/kg. 26.6 102

S (^) y Ans

Ti-6Al-4V titanium: Tables A-24c and A-

 

 

3 830 10 187 kN m/kg. 43.4 102

S (^) y Ans

ASTM No. 40 cast iron: Tables A-24a and A-5.Does not have a yield strength. Using the

ultimate strength in tension

  

 

3 42.5 6.89 10 40.7 kN m/kg 70.6 102

S ut (^) Ans

______________________________________________________________________________

AISI 1018 CD steel: Table A-

   

6 6

106 10 in.

E

Ans

2011-T6 aluminum: Table A-

   

6 10.4 10 (^6) 106 10 in.

E

Ans

Ti-6Al-6V titanium: Table A-

   

6 6

103 10 in.

E

Ans

No. 40 cast iron: Table A-

   

6 14.5 10 (^6) 55.8 10 in.

E

Ans

______________________________________________________________________________

E G

G v E v G

From Table A-

Steel:

v A

  ns

Aluminum:

v A

  ns

Beryllium copper:

v A

  ns

Gray cast iron:

v A

  ns

______________________________________________________________________________

2-6 ( a ) A 0 =  (0.503)

2

/4,  = Pi / A 0

For data in elastic range,  =  l / l 0 =  l / 2

For data in plastic range, 0 0 0 0 0

l l l l A

l l l A

On the next two pages, the data and plots are presented. Figure ( a ) shows the linear part of

the curve from data points 1-7. Figure ( b ) shows data points 1-12. Figure ( c ) shows the

complete range. Note : The exact value of A 0 is used without rounding off.

( b ) From Fig. ( a ) the slope of the line from a linear regression is E = 30.5 Mpsi Ans.

From Fig. ( b ) the equation for the dotted offset line is found to be

6

The equation for the line between data points 8 and 9 is

5

( b ) Offset yield

( c ) Complete range

( c ) The material is ductile since there is a large amount of deformation beyond yield.

( d ) The closest material to the values of Sy, Sut, and R is SAE 1045 HR with Sy = 45 kpsi,

Sut = 82 kpsi, and R = 40 %. Ans.


2-7 To plot  true vs. , the following equations are applied to the data.

true

P

A

Eq. (2-4)

0

0

ln for 0 0.0028 in

ln for 0.0028 in

l l l A l A

where

2 2 0

0.1987 in 4

A

  

The results are summarized in the table below and plotted on the next page. The last 5

points of data are used to plot log  vs log 

The curve fit gives m = 0.

log  0 = 5.1852   0 = 153.2 kpsi Ans.

For 20% cold work, Eq. (2-14) and Eq. (2-17) give,

A = A 0 (1 – W ) = 0.1987 (1 – 0.2) = 0.1590 in

2

0

0

ln ln 0.

Eq. (2-18): 153.2(0.2231) 108.4 kpsi.

Eq. (2-19), with 85.6 from Prob. 2-6,

107 kpsi. 1 1 0.

m y

u

u u

A

A

S A

S

S

S Ans W

ns

P  L A   true log  log true

  

  

 

3 6 (^20 )

14.0 10 psi 1.5 1 10

E 

Ans.

)^ ^ (kpsi)

______________________________________________________________________________

2-9 W = 0.20,

( a ) Before cold working: Annealed AISI 1018 steel. Table A-22, Sy = 32 kpsi, Su = 49.

kpsi,  0 = 90.0 kpsi, m = 0.25,  f = 1.

After cold working: Eq. (2-16),  u = m = 0.

Eq. (2-14),

i^1 1 0.

A

A W

Eq. (2-17), (^) i ln 0 ln1.25 0.223 u i

A

A

Eq. (2-18), S   93% increase Ans.

0 90 0.223^ 61.8 kpsi^.

m

y^   i

    Ans

Eq. (2-19),

61.9 kpsi. 1 1 0.

u u

S

S A

W

ns 25% increase Ans.

( b ) Before:

u

y

S

S

  After:

u

y

S

S

Ans.

Lost most of its ductility


2-10 W = 0.20,

( a ) Before cold working: AISI 1212 HR steel. Table A-22, Sy = 28 kpsi, Su = 61.5 kpsi,

 0 = 110 kpsi, m = 0.24,  f = 0.

After cold working: Eq. (2-16),  u = m = 0.

Eq. (2-14),

i^1 1 0.

A

A W

Eq. (2-17), (^) i ln 0 ln1.25 0.223 u i

A

A

Eq. (2-18),   174% increase Ans.

0 110 0.223^ 76.7 kpsi^.

m

S y   i A

    ns

Eq. (2-19),

76.9 kpsi. 1 1 0.

u u

S

S A

W

ns 25% increase Ans.

( b ) Before:

u

y

S

S

  After:

u

y

S

S

Ans.

Lost most of its ductility


2-11 W = 0.20,

( a ) Before cold working: 2024-T4 aluminum alloy. Table A-22, Sy = 43.0 kpsi, Su =

64.8 kpsi,  0 = 100 kpsi, m = 0.15,  f = 0.

After cold working: Eq. (2-16),  u = m = 0.

Eq. (2-14), 0

i^1 1 0.

A

A W

Eq. (2-17), (^) i ln 0 ln1.25 0. i

A

A

      f Material fractures. Ans.

______________________________________________________________________________

2-12 For HB = 275, Eq. (2-21), Su = 3.4(275) = 935 MPa Ans.


2-13 Gray cast iron, HB = 200.

Eq. (2-22), Su = 0.23(200)  12.5 = 33.5 kpsi Ans.

From Table A-24, this is probably ASTM No. 30 Gray cast iron Ans.


2-14 Eq. (2-21), 0.5 HB = 100  HB = 200 Ans.

______________________________________________________________________________

41.4 kpsi. 10

u u

S

S A

N

ns

Eq. (20-8),

10 2 2 2 1 17152.63^ 10 41.^

1.. u 1 9

u u i S

S NS

s A N

ns

______________________________________________________________________________

2-17 ( a )

2 45.5 (^3) 34.5 in lbf / in. 2(30)

u (^) R    Ans

( b )

P  L A A 0 / A – 1^ ^  = P / A 0

From the figures on the next page,

 

5

1

3 3

66.7 10 in lbf/in.

T i i

u A

Ans



A-20, perform a Brinell hardness test, then use Eq. (2-21) to estimate an ultimate strength

of. Assuming the material is hot-rolled due to the

rough surface finish, appropriate choices from Table A-20 would be one of the higher carbon steels, such as hot-rolled AISI 1050, 1060, or 1080. Ans.

Su  0.5 HB  0.5(200) 100 kpsi

______________________________________________________________________________

2-22 First, try to find the broad category of material (such as in Table A-5). Visual, magnetic,

and scratch tests are fast and inexpensive, so should all be done. Results from these three favor a softer, non-ferrous material like aluminum. If it is desired to confirm this, either a

weight or bending test could be done to check density or modulus of elasticity. The

weight test is faster. From the measured weight of 2.90 lbf, the unit weight is determined

to be

3 3 2

2.9 lbf 0.103 lbf/in 0.10 lbf/in [ (1 in) / 4](36 in)

W

Al

w    

which agrees reasonably well with the unit weight of 0.098 lbf/in

3 reported in Table A-

for aluminum. No other materials come close to this unit weight, so the material is likely

aluminum. Ans.


2-23 First, try to find the broad category of material (such as in Table A-5). Visual, magnetic,

and scratch tests are fast and inexpensive, so should all be done. Results from these three

favor a softer, non-ferrous copper-based material such as copper, brass, or bronze. To further distinguish the material, either a weight or bending test could be done to check

density or modulus of elasticity. The weight test is faster. From the measured weight of

9 lbf, the unit weight is determined to be

3 3 2

9.0 lbf 0.318 lbf/in 0.32 lbf/in [ (1 in) / 4](36 in)

W

Al 

w    

which agrees reasonably well with the unit weight of 0.322 lbf/in

3 reported in Table A-

for copper. Brass is not far off (0.309 lbf/in

3 ), so the deflection test could be used to gain

additional insight. From the measured deflection and utilizing the deflection equation for an end-loaded cantilever beam from Table A-9, Young’s modulus is determined to be

 

3 3

4

17.7 Mpsi (^3 3) (1) 64 (17 / 32)

Fl E

Iy 

which agrees better with the modulus for copper (17.2 Mpsi) than with brass (15.4 Mpsi).

The conclusion is that the material is likely copper. Ans.


2-24 and 2-25 These problems are for student research. No standard solutions are provided.


2-26 For strength,  = F/A = S  A = F/S

For mass, m = Al  = ( F/S ) l 

Thus, f 3 ( M ) =  /S , and maximize S/  (  = 1)

In Fig. (2-19), draw lines parallel to S/ 

From the list of materials given, both aluminum alloy and high carbon heat treated

steel are good candidates, having greater potential than tungsten carbide or polycarbonate. The higher strength aluminum alloys have a slightly greater potential. Other factors, such

as cost or availability, may dictate which to choose. Ans.


2-27 For stiffness, k = AE/lA = kl/E

For mass, m = Al  = ( kl/E ) l  = kl

2

 /E

Thus, f 3 ( M ) =  /E , and maximize E/  (  = 1)

In Fig. (2-16), draw lines parallel to E/ 