Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Digital Electronics Mid-Semester Exam Questions and Answers, Exams of Engineering

This pdf contains question paper of all subjects of Information Technology Department of UIET,Kanpur.

Typology: Exams

2017/2018

Uploaded on 01/20/2022

succour
succour 🇮🇳

4.5

(12)

63 documents

1 / 25

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
/
M.M-20
UIET,
MID
SEM-EXAM-2018
DIT-S-
2°'>
( Digital
Electronics)
f
ach
Quec;tiori have 4
m3rl<s
.
Q.1
(i)
247
.6 + 359.4
perform
following addition using
Ex
-3 code.
jJ!H
52
.4375)
10
= (
)2
= ( ) 8
,ci.
TIME-1.30
HOURS
(iii) Given
the
8
bit
data
word
QJ.._QJ.1011
generate Q
bit
composite word
for
the
hamming
code
that
correct single error.
(iv)
Y=
A(BC+D)
+
AB
implement the Boolean function by
NOR
GATE
.
Q.2
Simplify and Minimize
the
following function using Quine-
MC
Cluskey tabulation method
f (
A,B
,C,
D)
= M
(0
,1,2,3,4,6,8,9,10,11).
Q.3
Simplify
the
following expression
(i)
AB+
ABO+
AB6
+
ACD
+
ABC
implement
with
NAND
gate
(ii) f =
WX
+
YZ
+ WYZ-implement with
NOR
gate
Q.4 Convert
Excess
-3
code
to
BCD
code and draw
the
logic circui: ·gram.
Q.5 Explain full adder and draw
the
logic circuit diagram using
NANO
gate and
NOR
gate.
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19

Partial preview of the text

Download Digital Electronics Mid-Semester Exam Questions and Answers and more Exams Engineering in PDF only on Docsity!

/

M.M-

UIET, MID SEM-EXAM-

DIT-S- 2°'> ( Digital Electronics)

f ach Quec;tiori have 4 m3rl<s.

Q.1 (i) 247 .6 + 359.4 perform following addition using Ex -3 code.

jJ!H 52 .4375) 10 = ( )2 = ( ) 8 ,ci.

TIME-1.30 HOURS

(iii) Given the 8 bit data word QJ.._QJ.1011 generate Q bit composite word for the hamming code that correct single error.

(iv) Y= A(BC+D) + AB implement the Boolean function by NOR GATE.

Q.2 Simplify and Minimize the following function using Quine- MC Cluskey tabulation method

f ( A,B,C, D) = M (0 ,1,2,3,4,6,8,9,10,11).

Q.3 Simplify the following expression

(i) AB+ ABO+ AB6 + ACD + ABC implement with NAND gate

(ii) f = WX + YZ + WYZ- implement with NOR gate

Q.4 Convert Excess -3 code to BCD code and draw the logic circui: · gram.

Q.5 Explain full adder and draw the logic circuit diagram using NANO gate and NOR gate.

_,., /I

Time: - 03 : 00

Ql. a)

y) ~

f;r

g)

h)

(IOI 1.01 l h = (

End Scm 2018

DE (l>IT - S - 21_!1)

Sec-A

Attempt all question

h = ( )1 11

Find the IS ' s complement and 16 ' s complement of F2(L3AE.

Find the 8

1

" comrlement of 3675.

(4A8.68)16-(507D.S6)16 using 2's complement.

Explain ren ective code with example.

983-748 BCD subtraction using 9 th^ complement.

(3%. A) 1 (, = ( h = ( )x= () uni\ rn clc • "'. (4096) 111= ( )~rn~roclc = ( h :, .Jroclc

Q2. Explain multilevel NAN I) implementation with example.

M.M.:- -W

;.)J. Formulate the I-lamming code for four data bits D3O. 1 1 , 1i and 07 together with 3

parity bits Pl , P2 , P

a) Evaluate the 7 hits composite data word of the data word 0010.

h) Assume en error in bits DS show how the error in hit detected and correctccl.

Sec-B

Attempt any three question

QI. Prove that NANO is not associative.

Q2. a) Explain full adder and implement it with the help of NOR gate.

c) Explain 4 bit magnitude comparator.

Q3. Convert the RS flip flop to .iK flip flop.

Q4. Design a counter with the following binary sequence 0,4,2, 1,6 and repeat use .I K llip

flop.

QI.

Q2.

Q3.

Sec-C

Attempt any two question

Minimize the Boolean expression and prove y ,=y~

YI= A.C + A.B-}- A.'i~.C ..1· B.C Yi... ~ A. B-+ (_

F(A,B,C,O)=i7M(0,3,5,6,8,9, 10 , 12 ,14) lmplement the following Boolean expression

with 8: 1 and 4: 1 multiplexer ·

F(A,B,C,D)=z_M(0,4,8,12,l6,18,20,22) + cl (24, 26 ,28,30,31) simplify the following

Boolean expre ss ion and find SOP & POS.

QS. Convert the following expression from Infix to Postfix (2+2 marks)

(a) A+(BC-(D/E-FG)) * H (b)^ (a+b)/d^ 1'^ ((e-f)+g)

Q6. Convert the following expression P, from Postfix to Infix (2 marks)

(aj P: 12, 7,3,- ,i,2 ,1,5,+, *,+

Q7. Write the output of the following programs with proper reason and explanation

(2+2 marks)

(a) #include <stdio.h>

include <conio.h>

void main()

char p[ ] ="%d \n ";

clrscr();

p[1] = 'c' ;

printf(p,65);

getch();

}

(b) #include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

clrscr();

pri ntf( "%d\n" ,strlen ("123456"));

getch();

END SEMESTER EXAMINATION UIET, CSJM University, Kanpur

Department- IT (^) Semester- 3 rd

Subject- Data Structures

Subject Code- DIT-S 205

  • -- _ _ _ _ Time- 3:0QJ1ours ____ --"~ ___ __ _ ____ __ Max. Marks-

Note. : Attwrt o.li v,u hoM f,-ojl'l. b~k -:k e. 5ec.:hMs.

Section-A

Q.l. (a) Show that the maximum number of nodes in a binary tree of height his

2h+I - 1. (l Mark)

(b) The degree of a node is the number of children it has. Show that in any

binary tree the number of leaves is one more than the number of nodes

of degree 2. (2 Marks)

Q.~ Convert the following expression from postfix to infix : 623 + - 382 /.+*2$3.+

(3 Marks)

Q.3 A Binary Search Tree is generated by in se tting in order of the following

integers : 50 , 15 ,62,5,20,58, 91 ,3,8,37 ,60,24. Find the number of nodes in the

left subtree and right subtree of the root respectively. (3^ Marks)

Q.4 Why Circular Queue is prefer rather than Linear Queue? Give proper reasons

in support of your answer. Insert the following elements 69,21 ,71,39 , 103 , 46 in

a circular queue of size 5.Show the value of rear in each insertion and write the

conditions for overflow and underflow in case of circular queu e. (3^ Marks)

P.T.O.

I

: 3

Section-B

Q.6 Convert the following expression from infix to postfix

((((a*x + b) *x+c) * x+d) * x + e) * x :t L (4 Marks)

Q.7 The characters a to h have the set of frequencies based on the first 8 Fibonacci

numbersa~follows : GJJ~jc:2 lld:3j~ITi:J ~ lh: I

A Huffman code is used to represent the characters. What is the sequence of

characters corresponding to the following code 1l gJ 11 JOJH 11010? (4 Marks)

Q.8 The Preorder Traversal of a Binary Search Tree is given by 12, 8, 6, 2, 7, 9, 10,

16, 15, 19, 17 , 20. Find the Postorder Traversal of this tree. (4 Marks)

Q.9 What is the weight of a minimum spanning tree of the following graph? (4 Marks)

Q. l 0 Show adjacency matrix representation and adjacency list representation of the

following graph. (4 Marks)

P. T.O

Q. 11 Differentiate between the following with example-

(a) Linked List and Array

(b) Tree and Graph

(c) Linear Queue and Double Ended Queue

(d) BFS and DFS

(e) Complete Binmy Tree and Full Binmy Tree

(5 Marks)

UNIVERSITY INSTITUTE OF ENGINEERING AND TECHNOLOGY

KANPUR

Mid Semester Examination (Sept. 2018)

Department of Mechanical Engineering Subject Name: Engg. Mechanics (IT & CHE 2 nd^ year) ....... :r.= ···· ··· ··.. ........ ................................. .....~.';'.~j~.~!.~9.~.t :..~§~.~~.QJ .... .. .. ... ......................... .. ..... ..... ............... ... ... ........ .. .. .... ... .tm!.J;.JJ).J;{r::........... ............ ........... .... ... .... ........ ... ...... ... ........ .... ... .... ..................... ... ..... .... Mtu'l>:tJ.Q..... .... ..... ... ...

✓ Attempt all questions•.

Q.1 The cylinders in Fig. have the indicated weights and dimensions. Ass uming smooth contact surfaces, determine the reactions at A, 8, C, and D on the cylinders. W - 200 k N

AD----

  • -- 5.6 m

Q.2 Determine the force in each member of loaded truss by method of joint. B C D

5 ru 5 m E G p

30kN 60kN 30kN )

Q.3 The three flat blocks are positioned on the 30° incline as shown , and a force P parallel to the incline is applied to the middle block. The upper block is prevented from moving by a wire which attaches it to the fixed support. The coefficient of static friction for each of the three pairs of matin g surfa c.es is shown. Determine the maximum value which P may have before any slipping takes place.

Q.4 A uniform ladder 4.8 m long and weighing W is placed with one end on the ground and the other aga i nst a vertical wall. The angle of friction at all contact surfaces is 20°. Find the minimum value of the angle 8 at which the ladder can be inclined with the horizontal before slipping occurs.

Q.5 An equilateral triangular plate of side 3 m is acted on by three forces as shown in figure. Replace them 201c.~---.,.c

Jm (^). t · .·I IOkN 20°. .. 30kN

by an equivalent force couple system at A. A (^) 3m (^) B

I -

UNIVERSITY INSTITUTE OF ENGINEERING AND TECHNOLOGY KANPUR

End Semester Examination (Dec. 2018)

Department of Mechanical Engineering /.. ,

Subject Name : Engg. Mechanics (mlli? 2 nd^ year)~']) b--rCW' ~

................................. .................. .. ........ .... ........ Subject code : ESC-201 ............................. -=-- .. ... .... ..... ... .. .. ........ .. .. .. ... .. .. .. •• •••••• •••• ••.^ Il .ffi" ,-.K,^ 'l^ Uf."A-1 ,'i'r,^ ••• , ••••••••••••••••••••••••••••• ••• •••• • • ••• • • ••• ••••• •• •••• ••••••••••• • ••• ••••••• • •••• • •••••••••••••••••••••••••• >lAnl\Jl"'f' nil,^1 '"^ 5Q • •^ ..^ ...^ .................^ ..

✓ Attempt all sections.

SECTION-A '---,.

✓ Attempt all questions•.

Q.l(a) Explain Newton 's law ofmodon with example.

(b) State and drive Laws of parallelogram of forces.

(c) State and Drive the parallel axis theorem.

(15 marks)

I (3 marks)

(4 marks)

(4 marks)

(d) Q. a body is acted upon by forces as 50 N acting in East, 100 N 50° North ofEast, 75 N 20° West of North, 120

N acting 30° South of West, 90 N acting 25° West of South, 80 N acting 40° South of East. Find the resultant of these forces and also find position of that resultant. All forc es are acting from th e same po int. (4 mark s)

SECTION -B

✓ Attempt all questions.. (35 marks)

Q.2 A steel rod ABCD 4.5 m lon g and l 5 mm in d ia meter is subjected to forc es as shown in fi g ure. If the ,value of

youn g's modulus for th e steel is 200 GP a, determin e its defo rm ation. (5 marks)

A B C^ D

60kN ~~i^ •^ 1~^ • '^.^ "i^ ;~ ','.'sN'.-^ '~^1 :^ SOkN

...,. -- 2 m--~-I m + 1.5 m-.j

Q.3 A wei ghtless ladder of length 8 me ter is resting aga in st a smooth vertic al wall and rou gh horizo nta l gro und. The

coefficient of friction between ground and ladder is 0.25. A man of we ight 500 N wants to climb up th e ladder. T he man can climb without s lip. A se cond person wei ghtin g 8 00 N wa nt s to climb up the sa me ladd er. Would he climb le.sst haoth, ea,li e, pe,soo? Find the d is taoc ec o,ere d. G, b O' ~ ~f)ll,i:,a,l, (5 ma,k,)

Q.4 Determ ine th e reaction at a ll th e s upp o rts of th e bea m show n in fi gure. Q,('{t, a.clcle.9r · (S ma rks )

IO kN

5 kN / m

. ( - I kN

3 m / 3 m -..cc 2 :.:_:n..:... 1 - ii---=1--' 1 ~n~ ~l-...!.2~m.!........

_ - C ,.. ,. M. L) , KA t.l'vU R_

u \ t ' . I • J c--

]:: NJ) SEM ES 1£ R.. t:X AM It\l f\ TION - 2018

MTH - 5201

M -M· - So

ote : .Alle~l a.Qi. qu e;l-i 0\1/

Secb'cm - A

· 1-;"'d ' ~ , ~u ~ l:ta.1:- .±Re iunc-hon. i:C:z) e~JJ€J).-Sed

1 n -¥1AA (6 - OJ1JJnai~ GA f (z) =

I _.8 0 ncJ

Ji'c

51 '2- Co__,,8 2 0 t .i .,?-,,S i n -1J 0

C3]

?_;- ';1, kcJ J)a.,1-e --Hzl ~ c?-.+ ixo i :'.>10th A (I, 1) _fv BC 2-1 ½)

cJo _Hie CUJJve a ~± I ~-=- .±2. C3J

~· €voJ-1 o.kd }cJ Cau c{.1, ~ l:e cr1 J --~mnn Ja.

~ z (z-+ 71i) ~ oe c i~ \ z+ 3il -= I

C

C 3]

\ 0! 1:Cli 11 .l::R € -t, cJ) ~ J1 0 Y\ge .,S I Ylf" --2, €JI i el,

-::-Cc(..) :::. 2-a ~JL o.:::::. -x ~ 2-

~- ol,la;r1 ~e ~curhQQ J, ·ffeiient,a.Q e~a.hon ~

£0mina.bn(J ~e ro..kb<J Gnsta,,!s ci and .Q; r

3

J

{,j\om .Hie :,iJa.ho..,_ 7 = C'2lC -af + (~- .ML

b· Find Je Fou.:nierz lJlanst.JJt)-. ~ e-1~1 [ '3]

SECT IDN -'

1; So Q ve .llie ...POJ1-\i'a..Q cMl€JI €YI boJl tiu a..b'oi,,,

vf> C'\ + ci,) ~ Cf;Z-

[4]

8 · hnd H,e ~neiia.O ~~-or, "l -tfe ..Q.-r,erut l:cp-w.hclk- ( 4]

) a(( t -r) ..p + \1 c_z. - "" )'t =- :z C 'o(..,-f) 'j)-. ~

--,, cn, d I+~ .,_

\1. ol-l ain ~ e h- · --D u .J) L

.-,,, DLlJl I e,i_ ...8-€.J11 e,& ~SI .Lhe +UriCTJ Oh

Hence.

I+ 1-a: 7'

deduce (^) Ra.!- J_^ .1.^ l f2.^ t^ '.2-^ +^ 1-^ +^ ~^ ~ 3 5

Conlol(jc ;, lea J\ abof-;

d~ a~o

U· I. l::·T./ C· 5. ;r. fYI -U · KAN'PL>R

Qu-1 z - i

M TH- S Zol

----------::t:_ :-t- - .R--10L-L------ --

Yl - M- \

I · Find .Hie ifua.tion ~ose

1'\J:f, ~ ureJU o-f 1k -'1 C-OL

'2. ?J- - 2.. cX-Co-1, e + I = o

"1 aol./2 CVJ e lf,-e_

~ Je ciuali0r-.,

[3J

['<1 \1 - \ 5

lJ I E. T. I C s J****. 1'1 - u' 1 < A t\l? u ~

M TH - SZOI

13J?anc~ - 1 T ~ E Cf

Q UJ Z JI (^) 11 me. I {o LOL

Nole : _A 1 le m"='J: aDQ. i Ue2i hc, n ..,

. EvaL a1e }

JRe ;i e.Hi ocl ~ Co rnμ ex_ VCJ.JJ; JJrv.,,

r;e in k;PJcJ) f ~ 3

da-_

\J j ~ +1) -oo

2- o!1Cl.ln ~e FoL011 VL So, e& ..:bo 314..JJLle nl-

't Cat ) co ~ CA - a ) 2- o c::. 7Jl .c.. 2.. _f_

i--1 en, e O ..Q,1Ct.in ~e i, ..Q.00 l..U) a ;), J a.JiO),v

_L + .L + .L + 7'2- [ lf J l'l.. 2.2.. 3'1.. ~

  1. (^) -::,( ~) = [ *-Kl( -7* CO"( < 0

Q<::._ cX'.. c::::.. _I_

O't1d - -:: (cC + 2-i) = (^) i-Coe) (^) i-o-S) cJ.o (^) ?J(. I ollcvrv

~e Fo^ UJh.-€A^ S01, ~ (^) ~JJ -tc ~) '1)edure +f,Qt ~

- l + (^) .L - 1 3 5 +^ ,--^ -^ -^ 7f^ [½] 7 - - ~

[ 3]

Departm e nt of Information Technology

VIET , CSJM Univ ersity, K:mpur

OOP s Using .lava DIT-S Time: 3 ho ur End^ Sem Examination^ -^ D^ ec^2018 Maximum^ Mar^ ks^ :^ IO

Se ction A ( All qu es tions are comp ulsory)

  1. What will be the out pu t of th e progrnm?

class PassA { pub l ic static void mai n(S tring [] args){

}

PassA p = new PassA() ; p. star t O ;

void start O {

}

lo ng [] a1 = {3 , 4, 5} ; long [] a2 = fix(a1) ; System. out. print(al[O] + a1 [1] + a1 [2] + " ") ; System. out. println(a2[0] + a2[1] + a2[2]) ;

long[] fix(l ong [] a3){ a3[1] = 7 ; return a3 ; } }

class Test { public static void main(String[] args) { for(int t = O; 1; i++) { System. out. println ("Hello'' ) ; break ; } } }

class Base { public void Print() { System.out. println("Bas e "); } } class Derived extends Base {

}

public vo id Print() { System.out.println( "Derived "); }

class Main{ publi c stati c void DoPrint( Base 0 ) { a. Pr int() ; } publ ic static void main(String[] args) {

} }

Base x = new Ba se() ; Basey = new Der ived() ; Derived z = new Der ived() ; DoPrint(x) ; DoPrint(y) ; DoPrint(z) ;

cl ass Base { privat e int b ; Base(int x) { b = x;

} }

System. out. println( "Base constru ctor ca lled") ;

c lass Derived extends Base { private int d; Derived(int x, int y) { super(x) ;

} }

d = y; System. ou~. println ("D er iv ed constructor called");

class Main{

}

public stati c void main(String[] args) {

}

Derived obj= n~w Derived(! , 2);

Please go on to th e n ext page...

[05]

I.T.

l. T. ObjL'Ct Or ien ted Systems T heory Uis ng J ava Page^2 of^2

c lass Test{ public stati c void main(String a[]){ boolean b1 =tru e; boo le an b2 =false ; boolean b3= true ;

i f( b1 & b2 I b2 & b3 I b2)

Section B

}

System. out. println ( '' ok ") ;

if (b1 & b2 I b2 & b3 I b2 I bl)

System. out. println ("dokcy ") ; }

( All questions are cumpulsory)

Note : Do net used those progmm which are given in qu es tion pap er.

l. What is Dynamic method dispatch? Explain with example. [ 03 ]

  1. Write a java program to find t he sum of first 100 prime numbers. [ 03 ]
  2. Define applet. Describe th e lifecycle of an applet. Wri te a java program for appl et. [ 04 ]
  3. What is object-oriented programming? Discuss t he basic concepts of object-oriented programm-
  • ~ ~
  1. Explain StringBuffer class and StringBuilder class with example. Write a program to co unt numbers of words in a given sentences. [0 4]
  2. Explain constructor with the help of examples. Write a program to demonstrate operator overloading. [ 05 ]
  3. What is interface? How do you achieve multiple inheritance through interface? Explain with Example. [06]
  4. Write a java program to develop an abstract class polygon from which derive triangle and rectangle class. Each polygon should contain the function area() to calculate of them. [ 06 ]

***** All The Best*****