Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

~ Section 7.3 ~ Multiplication Properties of Exponents Packet, Schemes and Mind Maps of Pre-Calculus

Let's try some examples… Simplify each expression using the power to a power property of exponents and evaluate where appropriate. GUIDED PRACTICE Simplify ...

Typology: Schemes and Mind Maps

2021/2022

Uploaded on 09/27/2022

tarley
tarley 🇺🇸

4.5

(58)

251 documents

1 / 10

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
~ Section 7.3 ~ Multiplication
Properties of Exponents Packet
Warm ups…
Write each expression using an exponent.
1.
222
2.
xxxx
3.
33x x x y y y y
Write each expression without using an exponent. (expand the expression, do not simplify)
4.
3
4
5.
53
xy
6.
3 6 5
7ab
You have seen that exponential expressions are useful when writing very small or very large numbers. To
perform operations on these numbers, you can use properties of exponents. You can also use these
properties to simplify your answer. In this lesson, you will learn some properties that will help you simplify
exponential expressions containing multiplication.
n
a
The number
a
is the __________, and the number
is the ______________________.
The expression
n
a
is called a power and is read “
to the
th power.”
TLW be able to use the multiplication properties of exponents with variables of
the same base
TLW think ‘whoa check out that hoodie model… wonder if I could be a hoodie
model too’
TLW use multiplication properties of exponents to evaluate and simplify
expressions.
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download ~ Section 7.3 ~ Multiplication Properties of Exponents Packet and more Schemes and Mind Maps Pre-Calculus in PDF only on Docsity!

~ Section 7.3 ~ Multiplication

Properties of Exponents Packet

Warm ups… Write each expression using an exponent.

  1. 2 2 2 2. x x x x 3. 3 3 x x x y y y y

Write each expression without using an exponent. (expand the expression, do not simplify)

  1. 43 5. x y^5 3 6. 73 a b^6

You have seen that exponential expressions are useful when writing very small or very large numbers. To perform operations on these numbers, you can use properties of exponents. You can also use these properties to simplify your answer. In this lesson, you will learn some properties that will help you simplify exponential expressions containing multiplication.

n a

The number a is the __________, and the number n is the ______________________. The expression an is called a power and is read “ a to the n th power.”

TLW be able to use the multiplication properties of exponents with variables of the same base

TLW think ‘whoa check out that hoodie model… wonder if I could be a hoodie model too’

TLW use multiplication properties of exponents to evaluate and simplify expressions.

Let’s try some examples… Simplify each expression using the product of powers property. Do not evaluate numbers raised to a ridiculous power.

  1. 24 34 2 ^2 32 2. q^3^ r^2 q^6 3. n^3^ n ^4 n
  2. 78 74 5. 3 ^3 58 34 52 6. n m n^4 ^5

GUIDED PRACTICE Simplify each expression using the swell new properties of exponents you just learned.

  1. c^4 c^3^ c^2 2. x^12^ x^32 y^5 3. 32 31 4. 4 2 43

5.  3 m 5^  2 m^3  6.   2 x   3 x^3   5 x ^2  7.   2 a b^2 3^  5 ab^4  8.  

7 11 x

9.  2 xy^9^   4 x y z^2 4 3  10. 

2 4 0

5 s t 11. 10 2 109 12. 

4 5 5

3 2

2 x 14.   5 a ^2 15.  16 2 ^2 16.    

2 3 x x 3 x

17.  3 a  2   1 a ^4 18.  

30 0  5, 438,111 x 19. (^)   2 xy (^)  (^3)   x^2  20.     2 2  ab a b

Name: ____________________________________ Date: ___________________ Period: _______ Multiplication Exponents WS (1) Math is Exponentially Awesome Simplify each expression using properties of exponents. Evaluate where appropriate.

1.^ x x   ____________ 2.   y   y^2  ____________ 3.  n^5  n^7  ____________

4.  n    n^3  ____________ 5.   x^5^   x^19  ____________ 6.  

2 3 4 x x ____________

9 3 y ____________ 8. (^)  n^2    n ^4 ____________ 9. y^3  y^4  ____________

82  7 y ____________ 11. (^)   2 x (^) ^2  y^3  ____________ 12. (^)  7 xy (^) ^2  5 x^2  ____________

  1. 2 3 xy ^3 ____________ 14. m n m n^2 7 3 ^5 ____________ 15. (^)   4 xy ^2 ____________

16. ^2  ^4 rt ^2 ____________ 17.  2 m n^5 8   8 mn  ____________ 18. y^  ^2 y ^3 ____________

*19.   3 ab    3 ab^2^   3 a b^2 2  ____________ *20.^1  4 3 ^3  42,501, 222^0

(^) xy  ____________

Name: ____________________________________ Date: ___________________ Period: _______ Multiplication Exponents WS (3) Math is Heroic Simplify each expression using properties of exponents. Evaluate where appropriate.

2 32 x  4 x _______________ 2.  4 x^2   4 x ^2 _______________

3.   8 ab^2 ^2 _______________ 4.^1 2  6 4 ^2

 (^) n  n  


5.   5 x^12^   2 x^3 ^3 _______________ 6.   a b^2 ^4 _______________

  1. (^)   y^4^    y ^3   y^2  _______________ 8. 101 103 _______________

a^ ^ ab   

_______________ 10. ( 9 x y^3 2 )^2 _______________

2 4

3 ab c _______________ 12.   6 m n^3^7   4 m n^2 ^5  _______________

  1. (^)   10 xy (^) ^2  3 x^2  _______________ 14.  (^506)  506$!& %^0 _______________

2 2 22

 2 tw  5 tw _______________ 16. 436 !@#$% & ^0 _______________

Name: _____________________________________ Date: ______________________ Period: _________ Exponents M & N Review SIMPLIFY AND REWRITE THE FOLLOWING EXPRESSIONS USING POSITIVE EXPONENTS ONLY.

  1. 6 x^6^  x^9 1. _____________

8 4 2 x 2. _____________

  1.   3 x ^4 3. _____________

5 3  5 x 4. _____________

  1.  7 x^10^   9 x^9 5. _____________

6.   6 x ^3 ^4 6. _____________

3 2 7 x    7. _____________

2 (^410) 5

 (^)  x   


6 2  5 x  9. _____________

3 5  2 xy 10. _____________

Exponents Super Quiz Review  SIMPLIFY AND REWRITE THE FOLLOWING EXPRESSIONS USING POSITIVE EXPONENTS ONLY.

  1. x^12^  x^8 1. _______________

22 3 x 2. _______________

2 2  11 x 3. _______________

4.   3 x y^5 8 ^2 4. _______________

  1. (^)   5 x (^)  ^3  x ^2 5. _______________

6.  xy^20 ^8  z ^4 6. _______________

11 4 3 x  2 y 7. _______________

8.  10 x^27   7 x^3  8. _______________

  1. (^)  15 x (^) ^2  6 y^25  9. _______________

8 4 x  


  1. ( 12 ab^3 )^2 11. _______________