










Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Newton-Raphson is based on using an initial guess for the root and finding the intersection with the axis of the straight line which represents the slope at the initial guess. It works very fast and converges assuming the initial guess was good. Roots of Nonlinear Equations, Bisection Method, Problems, Multiple Roots, Double Roots, Singularities, Newton Raphson Method, Derivation, Problems, Newton’s Method, Secant Method
Typology: Slides
1 / 18
This page cannot be seen from the preview
Don't miss anything!
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
f
x (
f
x (
x
x
1
x
2
x
3
x
4
x
f(x)
roots of f(x)
f
x (
x
5
x
2
x
x
5
x
2
x
x
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
⇒
⇒
⇒ ⇒
kx
tan
x
kx
tan
x
kx
x
tan
f
x (
kx
x
tan
kx
x
tan
3
x
3
x
3
x
3
f
x (
x
3
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
⇒
⇒
a
1
b
1
x
r
a
1
b
1
c
1
x
x
r
f(x)
c
1
a
1
b
1
f
a
1
f
c
1
(
f
b
1
f
a
1
f
c
1
(
x
r
c
1
b
1
f
a
1
f
c
1
(
x
r
a
1
c
1
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
⇒
⇒
f
x (
a
2
b
2
c
1
b
1
c
2
a
2
b
2
x
f(x)
b
2
c
2
a
2
f
a
2
f
c
2
(
f
b
2
f
a
2
f
c
2
(
x
r
c
2
b
2
f
a
2
f
c
2
(
x
r
a
2
c
2
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
⇒ ⇒ ⇒
ε
ε
b
1
a
1
n
n
b
1
a
1
-^ ε
n
b
1
a
1
-^ ε
ln
ln
n
b
1
a
1
ln
n
ε
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
th
±
f
x (
x
2
a
n
b
n
c
n
f
a
n
f
b
n
(
f
c
n
(
i
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
x
f(x)
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
x
o
f
x (
x
o
x
f(x)
x
1
x
2
x
0
f(x)
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
f
2 (
)
x
o
(
f
1 (
)
x
o
(
x
r
x
o
2
x
o
x
n
x
n
1
f
x
n
1
f
1 (
)
x
n
1
n
n
f
2 (
)
x
n
1
f
1 (
)
x
n
1
x
n
x
n
1
2
n
x
n
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
f
x (
x
2
x
0
x
n
x
n
1
f
x
n
1
f
1 (
)
x
n
1
n
f
2 (
)
x
n
1
f
1 (
)
x
n
1
x
n
x
n
1
2
f
1 (
)
x (
x
f
2 (
)
x (
x
n
1
f
x
n
1
f
1 (
)
x
n
1
f
2 (
)
x
n
1
x
n
n
actual
x
2 4
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
f
x (
x
0
x
1
x
f(x)
x
f(x)
x
0
root you would like to find
root youwill find
CE 341/441 - Lecture 10 - Fall 2004
p. 10.
x
n
f
1 (
)
x
n
1
f
x
n
(
f
x
n
1
x
n
x
n
1
O x
n
x
n
1
f
1 (
)
x
n
1
f
x
n
2
f
x
n
1
x
n
2
x
n
1
O x
n
2
x
n
1
x
f(x)
x
n
x
n-
x
n-
x
n
x
n
1
f
x
n
1
f
x
n
2
f
x
n
1
x
n
2
x
n
1