Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Review Sheet for Test 2 - College Algebra - Fall 2008 | MATH 101, Exams of Algebra

Material Type: Exam; Class: College Algebra; Subject: Mathematics; University: Millersville University of Pennsylvania; Term: Unknown 2008;

Typology: Exams

Pre 2010

Uploaded on 08/19/2009

koofers-user-m39
koofers-user-m39 🇺🇸

10 documents

1 / 13

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Math 101
10–9–2008
Review Sheet for Test 2
These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.
1. (a) Show that it is not valid to cancel x’s in x+ 4
xto get 1 + 4
1= 5 by giving a specific value of xfor
which x+ 4
xis not equal to 5.
(b) Show that a
b
c
is not always the same as
a
b
cby giving specific values of a,b, and cfor which a
b
c
is not
equal to
a
b
c.
2. Simplify, cancelling any common factors:
(a) x2x2
x2+ 3x+ 2 ·x25x+ 6
x24x+ 4.
(b) x34x
5x2·x25x+ 6
x24x+ 4 ·10x3
6x+ 12.
3. Simplify, cancelling any common factors:
(a)
x36x2+ 9x
x26x+ 8
x28x+ 17
x4+ 2
.
(b) x2x2
5x415x3÷x2+ 5x+ 4
x3+ 4x2.
(c)
x22xy
x3+x2y
x24y2
x24xy 5y2
.
(d)
12
x3
x2
19
x2
.
(e)
1
x1+1
x+ 1
1 + 1
x21
.
(f)
x35x2
x22x15
x2+ 2x
x24
.
1
pf3
pf4
pf5
pf8
pf9
pfa
pfd

Partial preview of the text

Download Review Sheet for Test 2 - College Algebra - Fall 2008 | MATH 101 and more Exams Algebra in PDF only on Docsity!

Math 101 10–9–

Review Sheet for Test 2

These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence of a topic does not imply that it won’t appear on the test.

  1. (a) Show that it is not valid to cancel x’s in

x + 4 x to get

= 5 by giving a specific value of x for

which

x + 4 x is not equal to 5.

(b) Show that

a b c

is not always the same as

a b c

by giving specific values of a, b, and c for which

a b c

is not

equal to

a b c

  1. Simplify, cancelling any common factors:

(a) x^2 − x − 2 x^2 + 3x + 2

x^2 − 5 x + 6 x^2 − 4 x + 4

(b)

x^3 − 4 x 5 x^2

x^2 − 5 x + 6 x^2 − 4 x + 4

10 x^3 6 x + 12

  1. Simplify, cancelling any common factors:

(a)

x^3 − 6 x^2 + 9x x^2 − 6 x + 8 x^2 − 8 x + 17 x − 4

(b)

x^2 − x − 2 5 x^4 − 15 x^3

÷

x^2 + 5x + 4 x^3 + 4x^2

(c)

x^2 − 2 xy x^3 + x^2 y x^2 − 4 y^2 x^2 − 4 xy − 5 y^2

(d)

x

x^2 1 −

x^2

(e)

x − 1

x + 1 1 +

x^2 − 1

(f)

x^3 − 5 x^2 x^2 − 2 x − 15 x^2 + 2x x^2 − 4

(g)

x 1 −

x

x x − 1

  1. Combine the fractions into a single fraction and simplify:

(a)

x − 2

3 x x^2 − 2 x

x

(b)

x^2 − 5 x + 6

x^2 − 9

(c) 2 −

x

x + 1

(d) x x + y

y x − y

(e) x − 2 y x^2 − xy

2 y x^2 − y^2

(f) x −

x

x + 1 x − 1

  1. (a) Solve

x + 3

7 x + 1 x + 3

(b) Solve 16 +

3 x x − 4

x − 4

(c) Solve

x^2 − 2 x

x^2 − 4

x^2 + 2x

(d) Solve

x^2 x − 5

x − 5

  1. Pipe A can fill a tank in 3 hours. If pipes A and B work together, they can fill 5 tanks in 6 hours. How long would it take for pipe B to fill a tank by itself?
  2. Calvin can eat 800 Brussels sprouts in 4 hours. Phoebe can eat 600 Brussels sprouts in 5 hours. It takes Bonzo 3 hours to eat 240 Brussels sprouts. How long will it take them to eat 600 Brussels sprouts if they work together?
  3. Calvin can eat 396 tacos in 6 hours. Calvin and Phoebe, eating together, can eat 324 tacos in 3 hours. Phoebe and Bonzo, eating together, can eat 456 tacos in 4 hours. How long will it take Bonzo to eat 576 tacos by himself?
  4. The numerator of a fraction is 8 less than the denominator. If 7 is added to the top and the bottom of

the fraction, the new fraction is equal to

. Find the original fraction.

  1. A river flows at a constant rate of 1.6 miles per hour. Calvin rows 32 miles downstream (with the current) in 5 hours less than it takes him to row the same distance upstream (against the current). What is Calvin’s rowing speed in still water?
  2. Given that f (x) =

x^2 + 2 and g(x) = x^2 , find:

(a) f (3).

(b) f (−1).

(c) f (x + 1).

Thus,

a b c

is not in general equal to

a b c

  1. Simplify, cancelling any common factors:

(a)

x^2 − x − 2 x^2 + 3x + 2

x^2 − 5 x + 6 x^2 − 4 x + 4

x^2 − x − 2 x^2 + 3x + 2

x^2 − 5 x + 6 x^2 − 4 x + 4

(x − 2)(x + 1) (x + 1)(x + 2)

(x − 2)(x − 3) (x − 2)^2

x − 3 x + 2

(b) x^3 − 4 x 5 x^2

x^2 − 5 x + 6 x^2 − 4 x + 4

10 x^3 6 x + 12

x^3 − 4 x 5 x^2

x^2 − 5 x + 6 x^2 − 4 x + 4

10 x^3 6 x + 12

x(x^2 − 4) 5 x^2

(x − 2)(x − 3) (x − 2)^2

10 x^3 6(x + 2)

x(x − 2)(x + 2) 5 x^2

(x − 2)(x − 3) (x − 2)^2

10 x^3 6(x + 2)

x^2 (x − 3) 3

  1. Simplify, cancelling any common factors:

(a)

x^3 − 6 x^2 + 9x x^2 − 6 x + 8 x^2 − 8 x + 17 x − 4

x^3 − 6 x^2 + 9x x^2 − 6 x + 8 x^2 − 8 x + 17 x − 4

x(x − 3)^2 (x − 2)(x − 4) x^2 − 8 x + 17 x − 4

x − 4 x − 4

x(x − 3)^2 (x − 2)(x − 4) x^2 − 8 x + 17 + 2(x − 4) x − 4

x(x − 3)^2 (x − 2)(x − 4) x^2 − 6 x + 9 x − 4

x(x − 3)^2 (x − 2)(x − 4) (x − 3)^2 x − 4

x(x − 3)^2 (x − 2)(x − 4)

x − 4 (x − 3)^2

x x − 2

(b)

x^2 − x − 2 5 x^4 − 15 x^3

÷

x^2 + 5x + 4 x^3 + 4x^2

x^2 − x − 2 5 x^4 − 15 x^3

÷

x^2 + 5x + 4 x^3 + 4x^2

x^2 − x − 2 5 x^4 − 15 x^3 x^2 + 5x + 4 x^3 + 4x^2

x^2 − x − 2 5 x^4 − 15 x^3

x^3 + 4x^2 x^2 + 5x + 4

(x − 2)(x + 1) 5 x^3 (x − 3)

x^2 (x + 4) (x + 1)(x + 4)

x − 2 5 x(x − 3)

(c)

x^2 − 2 xy x^3 + x^2 y x^2 − 4 y^2 x^2 − 4 xy − 5 y^2

x^2 − 2 xy x^3 + x^2 y x^2 − 4 y^2 x^2 − 4 xy − 5 y^2

x^2 − 2 xy x^3 + x^2 y

x^2 − 4 xy − 5 y^2 x^2 − 4 y^2

x(x − 2 y) x^2 (x + y)

(x − 5 y)(x + y) (x − 2 y)(x + 2y)

x − 5 y x(x + 2y)

(d)

x

x^2 1 −

x^2

x

x^2 1 −

x^2

x

x^2 1 −

x^2

x^2 x^2

x^2 − 2 x − 3 x^2 − 9

(x − 3)(x + 1) (x − 3)(x + 3)

x + 1 x + 3

(e)

x − 1

x + 1 1 +

x^2 − 1

x − 1

x + 1 1 +

x^2 − 1

x − 1

x + 1 1 +

(x − 1)(x + 1)

x − 1

x + 1 1 +

(x − 1)(x + 1)

(x − 1)(x + 1) (x − 1)(x + 1)

(x − 1)(x + 1) x − 1

(x − 1)(x + 1) x + 1 (x − 1)(x + 1) +

(x − 1)(x + 1) (x − 1)(x + 1)

(x + 1) + (x − 1) (x − 1)(x + 1) + 1

2 x (x^2 − 1) + 1

2 x x^2

x

(f)

x^3 − 5 x^2 x^2 − 2 x − 15 x^2 + 2x x^2 − 4

x^3 − 5 x^2 x^2 − 2 x − 15 x^2 + 2x x^2 − 4

x^3 − 5 x^2 x^2 − 2 x − 15

x^2 − 4 x^2 + 2x

x^2 (x − 5) (x − 5)(x + 3)

(x − 2)(x + 2) x(x + 2)

x(x − 2) x + 3

(g)

x 1 −

x

x x − 1

x 1 −

x

x x − 1

x 1 −

x

x x

x x − 1

x + 1 x − 1

x x − 1

x + 1 − x x − 1

x − 1

  1. Combine the fractions into a single fraction and simplify:

(a)

x − 2

3 x x^2 − 2 x

x

x − 2

3 x x^2 − 2 x

x

x − 2

3 x x(x − 2)

x

x x

x − 2

3 x x(x − 2)

x − 2 x − 2

x

2 x + 3x − 2(x − 2) x(x − 2

3 x + 4 x(x − 2)

  1. (a) Solve

x + 3

7 x + 1 x + 3

x + 3

7 x + 1 x + 3

5(x + 3) ·

x + 3

= 5(x + 3) ·

7 x + 1 x + 3

5(x + 3) ·

x + 3

  • 5(x + 3) ·

= 5(x + 3) ·

7 x + 1 x + 3 15 + 12(x + 3) = 5(7x + 1) 15 + 12x + 36 = 35x + 5 51 + 12x = 35x + 5 46 + 12x = 35x 46 = 23x 2 = x

Check:

x + 3

7 x + 1 x + 3

The solution is x = 2.

(b) Solve 16 + 3 x x − 4

x − 4

3 x x − 4

x − 4

(x − 4) ·

3 x x − 4

= (x − 4) ·

x − 4

(x − 4) · 16 + (x − 4) ·

3 x x − 4 = (x − 4) ·

x − 4 16(x − 4) + 3x = 12 16 x − 64 + 3x = 12 19 x − 64 = 12 19 x = 76 x = 4

Plugging x = 4 into 16 +

3 x x − 4

x − 4

results in division by zero. Therefore, there are no solutions.

(c) Solve

x^2 − 2 x

x^2 − 4

x^2 + 2x

x^2 − 2 x

x^2 − 4

x^2 + 2x

x(x − 2)

(x − 2)(x + 2)

x(x + 2)

x(x − 2)(x + 2) ·

x(x − 2)

(x − 2)(x + 2)

x(x + 2)

= x(x − 2)(x + 2) · 0

3 x(x − 2)(x + 2) x(x − 2)

x(x − 2)(x + 2) (x − 2)(x + 2)

x(x − 2)(x + 2) x(x + 2)

3(x + 2) − x + (x − 2) = 0 3 x + 6 − x + x − 2 = 0 3 x + 4 = 0 3 x = − 4

x = −

Check: When x = −

x^2 − 2 x

x^2 − 4

x^2 + 2x

The solution is x = −

(d) Solve x^2 x − 5

x − 5

x^2 x − 5

x − 5

(x − 5) ·

x^2 x − 5

= (x − 5) · 7 + (x − 5) ·

x − 5 x^2 = 7(x − 5) + 25 x^2 = 7x − 35 + 25 x^2 = 7x − 10 x^2 − 7 x + 10 = 0 (x − 2)(x − 5) = 0 x = 2 or x = 5

Check: When x = 2, x^2 x − 5

and 7 +

x − 5

However, x = 5 causes division by 0 in the original equation. Therefore, the only solution is x = 2.

  1. Pipe A can fill a tank in 3 hours. If pipes A and B work together, they can fill 5 tanks in 6 hours. How long would it take for pipe B to fill a tank by itself?

Let x be Calvin’s rate in tacos per hour, let y be Phoebe’s rate in tacos per hour, and let z be Bonzo’s rate in tacos per hour.

hours · tacos per hour = tacos Calvin 6 · x = 396 Calvin and Phoebe 3 · x + y = 324 Phoebe and Bonzo 4 · y + z = 456 Bonzo t · z = 576

The first row says 6x = 396, so x = 66. The second row says 3(x + y) = 324. Plug in x = 66 and solve for y:

3(66 + y) = 324 66 + y = 108 y = 42

The third row says 4(y + z) = 456. Plug in y = 42 and solve for z:

4(42 + z) = 456 42 + z = 114 z = 72

The fourth row says tz = 576. Plug in z = 72 and solve for t:

72 t = 576 t = 8

It takes Bonzo 8 hours.

  1. The numerator of a fraction is 8 less than the denominator. If 7 is added to the top and the bottom of

the fraction, the new fraction is equal to

. Find the original fraction.

Let n d

be the original fraction. The numerator is 8 less than the denominator, so

n = d − 8.

If 7 is added to the top and the bottom, the result equals

n + 7 d + 7

Plug n = d − 8 into

n + 7 d + 7

d − 8 + 7 d − 7

d − 1 d + 7

Multiply by 5(d + 7) to clear denominators:

5(d + 7) ·

d − 1 d + 7

= 5(d + 7) ·

, 5(d − 1) = 3(d + 7).

Solve for d: 5 d − 5 = 3d + 21, 2 d = 26, d = 13.

Hence, n = d − 8 = 13 − 8 = 5. The fraction is

  1. A river flows at a constant rate of 1.6 miles per hour. Calvin rows 32 miles downstream (with the current) in 5 hours less than it takes him to row the same distance upstream (against the current). What is Calvin’s rowing speed in still water?

Let x be Calvin’s rowing speed in still water. His downstream rate is x + 1.6, while his downstream rate is x − 1 .6. Let t be the time it takes Calvin to row upstream. Then it takes him t − 5 (that is, 5 hours less) to row downstream. time · speed = distance downstream t − 5 · x + 16 = 32 upstream t · x − 1. 6 = 32

The equations are (t − 5)(x + 1.6) = 32 and t(x − 1 .6) = 32. Solve the second equation for t:

t(x − 1 .6) = 32 1 x − 1. 6

· t(x − 1 .6) =

x − 1. 6

t =

x − 1. 6

Plug this into (t − 5)(x + 1.6) = 32 and solve for x:

(t − 5)(x + 1.6) = 32 ( 32 x − 1. 6

(x + 1.6) = 32

(x − 1 .6) ·

x − 1. 6

(x + 1.6) = (x − 1 .6) · 32 ( 32(x − 1 .6) x − 1. 6

− 5(x − 1 .6)

(x + 1.6) = 32(x − 1 .6)

[32 − 5(x − 1 .6)](x + 1.6) = 32(x − 1 .6) (32 − 5 x + 8)(x + 1.6) = 32x − 51. 2 (40 − 5 x)(x + 1.6) = 32x − 51. 2 − 5 x^2 + 32x + 64 = 32x − 51. 2 − 5 x^2 = − 115. 2 x^2 = 23. 04 x = ± 4. 8

Since Calvin’s speed can’t be negative, I must have x = 4.8 miles per hour.

  1. Given that f (x) =

x^2 + 2

and g(x) = x^2 , find:

Since f (x) =

x + 1 x^2 − 3 x + 2

x + 1 (x − 1)(x − 2)

, f will be undefined if x = 1 or if x = 2. The domain

consists of all real numbers except for 1 and 2.

(b) Find the domain of g(x) =

x − 1.

g will be undefined if the stuff inside the square root (x − 1) is negative. So I must have x − 1 ≥ 0, or x ≥ 1. The domain consists of all real numbers greater than or equal to 1.

  1. Find the range of the function whose entire graph is pictured below.

The range of a function is the set of its outputs, i.e. the set of y-values it attains. The function attains every y-value (height) from −2 to 3, including 3 but not including −2 (the open circle at (− 2 , −2) indicates that the point is not on the graph). Therefore, the range is − 2 < y ≤ 3.

  1. (a) y varies directly with x. When x = 5, y = 135. Find x when y = 9.

y varies directly with x: y = kx. When x = 5, y = 135: 135 = k · 5, so k = 27. Therefore, y = 27x. When y = 9, I get 9 = 27x, so x =

(b) y is inversely proportional to x. When x = 8, y = 24. Find x when y = 16.

y is inversely proportional to x: y =

k x

When x = 8, y = 24: 24 = k 8

, so k = 8 · 24 = 192. Therefore, y =

x

When y = 16, I get 16 =

x

. Multiplying both sides by x, I get 16x = 192, so x =

(c) y is inversely proportional to the square of x. When x = 6, y = 20. Find y when x = 4.

y is inversely proportional to the square of x: y =

k x^2

When x = 6, y = 20: 20 = k 62

, or 20 = k 36

. Then k = 20 · 36 = 720, so y =

x^2

When x = 4, y =

To think is not enough; you must think of something. - Jules Renard

©^ c2008 by Bruce Ikenaga 13