







Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Exam; Class: College Algebra; Subject: Mathematics; University: Millersville University of Pennsylvania; Term: Unknown 2008;
Typology: Exams
1 / 13
This page cannot be seen from the preview
Don't miss anything!
Math 101 10–9–
These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence of a topic does not imply that it won’t appear on the test.
x + 4 x to get
= 5 by giving a specific value of x for
which
x + 4 x is not equal to 5.
(b) Show that
a b c
is not always the same as
a b c
by giving specific values of a, b, and c for which
a b c
is not
equal to
a b c
(a) x^2 − x − 2 x^2 + 3x + 2
x^2 − 5 x + 6 x^2 − 4 x + 4
(b)
x^3 − 4 x 5 x^2
x^2 − 5 x + 6 x^2 − 4 x + 4
10 x^3 6 x + 12
(a)
x^3 − 6 x^2 + 9x x^2 − 6 x + 8 x^2 − 8 x + 17 x − 4
(b)
x^2 − x − 2 5 x^4 − 15 x^3
x^2 + 5x + 4 x^3 + 4x^2
(c)
x^2 − 2 xy x^3 + x^2 y x^2 − 4 y^2 x^2 − 4 xy − 5 y^2
(d)
x
x^2 1 −
x^2
(e)
x − 1
x + 1 1 +
x^2 − 1
(f)
x^3 − 5 x^2 x^2 − 2 x − 15 x^2 + 2x x^2 − 4
(g)
x 1 −
x
x x − 1
(a)
x − 2
3 x x^2 − 2 x
x
(b)
x^2 − 5 x + 6
x^2 − 9
(c) 2 −
x
x + 1
(d) x x + y
y x − y
(e) x − 2 y x^2 − xy
2 y x^2 − y^2
(f) x −
x
x + 1 x − 1
x + 3
7 x + 1 x + 3
(b) Solve 16 +
3 x x − 4
x − 4
(c) Solve
x^2 − 2 x
x^2 − 4
x^2 + 2x
(d) Solve
x^2 x − 5
x − 5
the fraction, the new fraction is equal to
. Find the original fraction.
x^2 + 2 and g(x) = x^2 , find:
(a) f (3).
(b) f (−1).
(c) f (x + 1).
Thus,
a b c
is not in general equal to
a b c
(a)
x^2 − x − 2 x^2 + 3x + 2
x^2 − 5 x + 6 x^2 − 4 x + 4
x^2 − x − 2 x^2 + 3x + 2
x^2 − 5 x + 6 x^2 − 4 x + 4
(x − 2)(x + 1) (x + 1)(x + 2)
(x − 2)(x − 3) (x − 2)^2
x − 3 x + 2
(b) x^3 − 4 x 5 x^2
x^2 − 5 x + 6 x^2 − 4 x + 4
10 x^3 6 x + 12
x^3 − 4 x 5 x^2
x^2 − 5 x + 6 x^2 − 4 x + 4
10 x^3 6 x + 12
x(x^2 − 4) 5 x^2
(x − 2)(x − 3) (x − 2)^2
10 x^3 6(x + 2)
x(x − 2)(x + 2) 5 x^2
(x − 2)(x − 3) (x − 2)^2
10 x^3 6(x + 2)
x^2 (x − 3) 3
(a)
x^3 − 6 x^2 + 9x x^2 − 6 x + 8 x^2 − 8 x + 17 x − 4
x^3 − 6 x^2 + 9x x^2 − 6 x + 8 x^2 − 8 x + 17 x − 4
x(x − 3)^2 (x − 2)(x − 4) x^2 − 8 x + 17 x − 4
x − 4 x − 4
x(x − 3)^2 (x − 2)(x − 4) x^2 − 8 x + 17 + 2(x − 4) x − 4
x(x − 3)^2 (x − 2)(x − 4) x^2 − 6 x + 9 x − 4
x(x − 3)^2 (x − 2)(x − 4) (x − 3)^2 x − 4
x(x − 3)^2 (x − 2)(x − 4)
x − 4 (x − 3)^2
x x − 2
(b)
x^2 − x − 2 5 x^4 − 15 x^3
x^2 + 5x + 4 x^3 + 4x^2
x^2 − x − 2 5 x^4 − 15 x^3
x^2 + 5x + 4 x^3 + 4x^2
x^2 − x − 2 5 x^4 − 15 x^3 x^2 + 5x + 4 x^3 + 4x^2
x^2 − x − 2 5 x^4 − 15 x^3
x^3 + 4x^2 x^2 + 5x + 4
(x − 2)(x + 1) 5 x^3 (x − 3)
x^2 (x + 4) (x + 1)(x + 4)
x − 2 5 x(x − 3)
(c)
x^2 − 2 xy x^3 + x^2 y x^2 − 4 y^2 x^2 − 4 xy − 5 y^2
x^2 − 2 xy x^3 + x^2 y x^2 − 4 y^2 x^2 − 4 xy − 5 y^2
x^2 − 2 xy x^3 + x^2 y
x^2 − 4 xy − 5 y^2 x^2 − 4 y^2
x(x − 2 y) x^2 (x + y)
(x − 5 y)(x + y) (x − 2 y)(x + 2y)
x − 5 y x(x + 2y)
(d)
x
x^2 1 −
x^2
x
x^2 1 −
x^2
x
x^2 1 −
x^2
x^2 x^2
x^2 − 2 x − 3 x^2 − 9
(x − 3)(x + 1) (x − 3)(x + 3)
x + 1 x + 3
(e)
x − 1
x + 1 1 +
x^2 − 1
x − 1
x + 1 1 +
x^2 − 1
x − 1
x + 1 1 +
(x − 1)(x + 1)
x − 1
x + 1 1 +
(x − 1)(x + 1)
(x − 1)(x + 1) (x − 1)(x + 1)
(x − 1)(x + 1) x − 1
(x − 1)(x + 1) x + 1 (x − 1)(x + 1) +
(x − 1)(x + 1) (x − 1)(x + 1)
(x + 1) + (x − 1) (x − 1)(x + 1) + 1
2 x (x^2 − 1) + 1
2 x x^2
x
(f)
x^3 − 5 x^2 x^2 − 2 x − 15 x^2 + 2x x^2 − 4
x^3 − 5 x^2 x^2 − 2 x − 15 x^2 + 2x x^2 − 4
x^3 − 5 x^2 x^2 − 2 x − 15
x^2 − 4 x^2 + 2x
x^2 (x − 5) (x − 5)(x + 3)
(x − 2)(x + 2) x(x + 2)
x(x − 2) x + 3
(g)
x 1 −
x
x x − 1
x 1 −
x
x x − 1
x 1 −
x
x x
x x − 1
x + 1 x − 1
x x − 1
x + 1 − x x − 1
x − 1
(a)
x − 2
3 x x^2 − 2 x
x
x − 2
3 x x^2 − 2 x
x
x − 2
3 x x(x − 2)
x
x x
x − 2
3 x x(x − 2)
x − 2 x − 2
x
2 x + 3x − 2(x − 2) x(x − 2
3 x + 4 x(x − 2)
x + 3
7 x + 1 x + 3
x + 3
7 x + 1 x + 3
5(x + 3) ·
x + 3
= 5(x + 3) ·
7 x + 1 x + 3
5(x + 3) ·
x + 3
= 5(x + 3) ·
7 x + 1 x + 3 15 + 12(x + 3) = 5(7x + 1) 15 + 12x + 36 = 35x + 5 51 + 12x = 35x + 5 46 + 12x = 35x 46 = 23x 2 = x
Check:
x + 3
7 x + 1 x + 3
The solution is x = 2.
(b) Solve 16 + 3 x x − 4
x − 4
3 x x − 4
x − 4
(x − 4) ·
3 x x − 4
= (x − 4) ·
x − 4
(x − 4) · 16 + (x − 4) ·
3 x x − 4 = (x − 4) ·
x − 4 16(x − 4) + 3x = 12 16 x − 64 + 3x = 12 19 x − 64 = 12 19 x = 76 x = 4
Plugging x = 4 into 16 +
3 x x − 4
x − 4
results in division by zero. Therefore, there are no solutions.
(c) Solve
x^2 − 2 x
x^2 − 4
x^2 + 2x
x^2 − 2 x
x^2 − 4
x^2 + 2x
x(x − 2)
(x − 2)(x + 2)
x(x + 2)
x(x − 2)(x + 2) ·
x(x − 2)
(x − 2)(x + 2)
x(x + 2)
= x(x − 2)(x + 2) · 0
3 x(x − 2)(x + 2) x(x − 2)
x(x − 2)(x + 2) (x − 2)(x + 2)
x(x − 2)(x + 2) x(x + 2)
3(x + 2) − x + (x − 2) = 0 3 x + 6 − x + x − 2 = 0 3 x + 4 = 0 3 x = − 4
x = −
Check: When x = −
x^2 − 2 x
x^2 − 4
x^2 + 2x
The solution is x = −
(d) Solve x^2 x − 5
x − 5
x^2 x − 5
x − 5
(x − 5) ·
x^2 x − 5
= (x − 5) · 7 + (x − 5) ·
x − 5 x^2 = 7(x − 5) + 25 x^2 = 7x − 35 + 25 x^2 = 7x − 10 x^2 − 7 x + 10 = 0 (x − 2)(x − 5) = 0 x = 2 or x = 5
Check: When x = 2, x^2 x − 5
and 7 +
x − 5
However, x = 5 causes division by 0 in the original equation. Therefore, the only solution is x = 2.
Let x be Calvin’s rate in tacos per hour, let y be Phoebe’s rate in tacos per hour, and let z be Bonzo’s rate in tacos per hour.
hours · tacos per hour = tacos Calvin 6 · x = 396 Calvin and Phoebe 3 · x + y = 324 Phoebe and Bonzo 4 · y + z = 456 Bonzo t · z = 576
The first row says 6x = 396, so x = 66. The second row says 3(x + y) = 324. Plug in x = 66 and solve for y:
3(66 + y) = 324 66 + y = 108 y = 42
The third row says 4(y + z) = 456. Plug in y = 42 and solve for z:
4(42 + z) = 456 42 + z = 114 z = 72
The fourth row says tz = 576. Plug in z = 72 and solve for t:
72 t = 576 t = 8
It takes Bonzo 8 hours.
the fraction, the new fraction is equal to
. Find the original fraction.
Let n d
be the original fraction. The numerator is 8 less than the denominator, so
n = d − 8.
If 7 is added to the top and the bottom, the result equals
n + 7 d + 7
Plug n = d − 8 into
n + 7 d + 7
d − 8 + 7 d − 7
d − 1 d + 7
Multiply by 5(d + 7) to clear denominators:
5(d + 7) ·
d − 1 d + 7
= 5(d + 7) ·
, 5(d − 1) = 3(d + 7).
Solve for d: 5 d − 5 = 3d + 21, 2 d = 26, d = 13.
Hence, n = d − 8 = 13 − 8 = 5. The fraction is
Let x be Calvin’s rowing speed in still water. His downstream rate is x + 1.6, while his downstream rate is x − 1 .6. Let t be the time it takes Calvin to row upstream. Then it takes him t − 5 (that is, 5 hours less) to row downstream. time · speed = distance downstream t − 5 · x + 16 = 32 upstream t · x − 1. 6 = 32
The equations are (t − 5)(x + 1.6) = 32 and t(x − 1 .6) = 32. Solve the second equation for t:
t(x − 1 .6) = 32 1 x − 1. 6
· t(x − 1 .6) =
x − 1. 6
t =
x − 1. 6
Plug this into (t − 5)(x + 1.6) = 32 and solve for x:
(t − 5)(x + 1.6) = 32 ( 32 x − 1. 6
(x + 1.6) = 32
(x − 1 .6) ·
x − 1. 6
(x + 1.6) = (x − 1 .6) · 32 ( 32(x − 1 .6) x − 1. 6
− 5(x − 1 .6)
(x + 1.6) = 32(x − 1 .6)
[32 − 5(x − 1 .6)](x + 1.6) = 32(x − 1 .6) (32 − 5 x + 8)(x + 1.6) = 32x − 51. 2 (40 − 5 x)(x + 1.6) = 32x − 51. 2 − 5 x^2 + 32x + 64 = 32x − 51. 2 − 5 x^2 = − 115. 2 x^2 = 23. 04 x = ± 4. 8
Since Calvin’s speed can’t be negative, I must have x = 4.8 miles per hour.
x^2 + 2
and g(x) = x^2 , find:
Since f (x) =
x + 1 x^2 − 3 x + 2
x + 1 (x − 1)(x − 2)
, f will be undefined if x = 1 or if x = 2. The domain
consists of all real numbers except for 1 and 2.
(b) Find the domain of g(x) =
x − 1.
g will be undefined if the stuff inside the square root (x − 1) is negative. So I must have x − 1 ≥ 0, or x ≥ 1. The domain consists of all real numbers greater than or equal to 1.
The range of a function is the set of its outputs, i.e. the set of y-values it attains. The function attains every y-value (height) from −2 to 3, including 3 but not including −2 (the open circle at (− 2 , −2) indicates that the point is not on the graph). Therefore, the range is − 2 < y ≤ 3.
y varies directly with x: y = kx. When x = 5, y = 135: 135 = k · 5, so k = 27. Therefore, y = 27x. When y = 9, I get 9 = 27x, so x =
(b) y is inversely proportional to x. When x = 8, y = 24. Find x when y = 16.
y is inversely proportional to x: y =
k x
When x = 8, y = 24: 24 = k 8
, so k = 8 · 24 = 192. Therefore, y =
x
When y = 16, I get 16 =
x
. Multiplying both sides by x, I get 16x = 192, so x =
(c) y is inversely proportional to the square of x. When x = 6, y = 20. Find y when x = 4.
y is inversely proportional to the square of x: y =
k x^2
When x = 6, y = 20: 20 = k 62
, or 20 = k 36
. Then k = 20 · 36 = 720, so y =
x^2
When x = 4, y =
To think is not enough; you must think of something. - Jules Renard
©^ c2008 by Bruce Ikenaga 13