Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Characteristic Polynomial and Eigenvalues Calculation for Matrices B and A, Exercises of Linear Algebra

The steps to find the characteristic polynomial and eigenvalues for two matrices b and a. It includes the given matrices, the calculations for the characteristic polynomials, and the determination of the eigenvalues.

Typology: Exercises

2012/2013

Uploaded on 02/27/2013

seshu_lin3
seshu_lin3 🇮🇳

4

(3)

59 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Math 205B&C 03/13/09
[
12 -12
]
1. Let B= 6 -5 .
1A. Find the characteristic polynomialofB. Showall your steps.
C''''.r f'!J (B)" t&tW'~). -~~J) ,.('4- ).)(-S--),)+f2.
L ;' - +S ')..--/2.>..,.')\2.of-'f'L
.. )..'Z..- 1A.,. /2-
r...u.' £t,.. /J I0-= ~...'t)(~-J}
lB. What, if any, are the eigenvaluesof B? x'1I'J e; ~ ') w: /lit: - 'I. f'
H-'t ,,. >. -Ja..c..~.~-.t:
1C. What number m should the "6" in Bbe replaced with, so that the res mg ma nx as A= 0 as
an eigenvalue? (The other eigenvalue will be new, too). How did you find m?
frlel/,J :L: C~ m ~() &4 A to 4\ /ldJr ~2.." A= 0 ~ ti'? et~ ~jj]
1It: chAr. f1: ~ [J2i ~rr:t. bits!::
,I~;~/':;~l= -00-t'A +'A'l.+/21Y) ~ih. eoJ£ ~1-./.
.J ,d, I "- '-D"'? \, \1.+ ~~.; A. IYItl
l~jf( CJIk-
c~ose (y}:::.5 TillS ~ f9 rA+ f\ ",
J="' 'A\.'" 7~ L~4 bfc- I\IUrAj Q.Colcl~f1~J
'4 A (~-1) ~[n. -I"Z-]-= [17. -12.]
y'YI-s 5-5
,Quiz 06 page 1 ~ame~8am
JJ .(olvho~ 1:10 pm
[
2 2 -2
]
2. Let A= 1 1 2 .
1 -2 5 @r'Yl;::z.s:-
2A. It's a fact that v ~[ ~5] is an eigenvector of A. Find the eigenvalne by direct compntation of Av.
SO A~:It ).Q ,(;r J;OhK>.. :
[Z. ~-'2.
J[
-rJ[-10][S"J2>. tC:"\
z.
fh7LJ)Av::: : ..~ } ~ :: ~: ~2. f:t V; c.L; \CY
2B. It's a fact that A= 3 is an eigenvalue of A. Find a basis for its eigenspace.
Ja4( a, ft 1'niI ~~,j j, IW/ (A-1:r:)
[J
.
['-l.. l.]
/tOUl fl-.u::='- -,' -"1 ~t ;ik MfF b; ~ ~ $'/ &0
I-1.. 1-
~b.~< ~([UJn}~.rIMM ~r" kdwS~~'
2C.WhatisthedimenIDonof;heei{~;i(;&.I~@k.,j (ur'" t-, ;,t, ntJ'f-j

Partial preview of the text

Download Characteristic Polynomial and Eigenvalues Calculation for Matrices B and A and more Exercises Linear Algebra in PDF only on Docsity!

Math 205B&C 03/13/

[

12 -

1. Let B = 6 -5 ].

1A. Find the characteristic polynomialof B. Showall your steps.

C''''.r f'!J (B)" t&tW'~). -~~ J) ,.('4- ).)(-S--),)+ f2.

L ;' - '° +S ').. --/2. >..,.')\2.of- 'f'L

.. )..'Z..- 1A .,. /2- r...u.' £ t,.. /J I 0-= ~ ...'t (^) )(~-J} lB. What, if any, are the eigenvaluesof B? x'1I'J e; ~ ') w: /lit: - 'I. f'

H - 't ,,. >. - J a..c..~.~-.t:

1C. What number m should the "6" in B be replaced with, so that the res mg ma nx as A = 0 as an eigenvalue? (The other eigenvalue will be new, too). How did you find m?

frlel/,J :L: C~ m ~() &4 A to 4\ /ldJr ~ 2.." A= 0 ~ ti'? et~ ~ j j]

1 It: chAr. f1: ~ [J2i ~rr:t. bits!::

, I~;~/':;~l= -00-t'A +'A'l. + /21Y) ~ ih. eoJ£ ~ 1-./. .J , d, I "- '-D "'? , \1.+ ~ ~.; A. IYItl

l

~ j

f( CJIk-

c~ose (y}:::.5 TillS ~ f9 r A+ _f_ ", J ="' 'A.'" 7~ L~4 bfc- I\IUrAj Q.Colcl~f1~J '4 A (~-1) ~

[

n. -I"Z- ]

-=

[

17. -12.

y'YI -s 5-5 ]

,Quiz 06 page 1 (^) ~ame~8am JJ .(olvho~

1:10 pm

[

2 2 -

]

  1. Let A = 1 1 2. 1 -2 5 @ r'Yl ;::z.s:-

2A. It's a fact that v ~ [ ~5] is an eigenvector of A. Find the eigenvalne by direct compntation of Av.

SO A ~ :It ).Q ,(;r J;OhK>.. :

[

Z. ~ -'2.

J[

-r

J (^) [

-

] [

S"

J

2

. tC:"
z.

fh7LJ)Av::: : ..~ } ~ :: ~: ~ 2. f :t V; c.L; \CY

2B. It's a fact that A = 3 is an eigenvalue of A. Find a basis for its eigenspace.

Ja4( a, ft 1'niI ~ ~,j j, IW/ ( A - 1:r:)

[ J

[

' -l.. l.

/tOUl fl-.u:: ='- -,' -"1 ~t ; ik MfF b ; ~ ~ ] $'/ &

I -1.. 1-

~ b.~< ~ ([ UJn} ~ .rIMM ~ r" kdwS~~'

2C.WhatisthedimenIDonof;heei{~;i(;&. I~@k.,j (ur '" t-, ;,t, ntJ'f-j