




























































































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Solutions Manual: Microelectronics 4th, Neamen Material Type: Notes; Class: Electronics; Subject: Electrical & Computer Engineer; University: Virginia Polytechnic Institute And State University; Term: Fall 2015;
Typology: Study notes
1 / 664
This page cannot be seen from the preview
Don't miss anything!
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
3 / 2 Eg^ / 2 kT ni BT e
(a) Silicon
(i) (^) ( )( ) ( )( )
15 3 / 2 6
19
8 3
5.23 10 250 exp 2 86 10 250
2.067 10 exp 25.
1.61 10 cm
i
i
n
n
−
−
(ii) (^) ( )( )
( )(^ )
15 3 / 2 6
19
11 3
5.23 10 350 exp 2 86 10 350
3.425 10 exp 18.
3.97 10 cm
i
i
n
n
−
−
(b) GaAs
(i) (^) ( )( )
( )(^ )
( ) [ ]
14 3 / 2 6
17
3 3
2.10 10 250 exp 2 86 10 250
8.301 10 exp 32.
6.02 10 cm
i
i
n
n
−
−
(ii) (^) ( )( )
( )(^ )
( ) [ ]
14 3 / 2 6
18
8 3
2.10 10 350 exp 2 86 10 350
1.375 10 exp 23.
1.09 10 cm
i
i
n
n
−
−
a.
3 / 2 exp 2
i
Eg n BT kT
12 15 3 / 2 6
10 5.23 10 exp 2(86 10 )( )
−
3 4 3 / 2 6.40^10 1.91 10 T exp T
By trial and error, T ≈368 K
b.
9 3 ni 10 cm
( )( )
9 15 3 / 2 6
10 5.23 10 exp 2 86 10
−
3 7 3 / 2 6.40^10 1.91 10 T exp T
By trial and error, T ≈ 268 °K
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
Silicon
15 3 / 2 6
18
10 3
5.23 10 100 exp 2 86 10 100
5.23 10 exp 63.
8.79 10 cm
i
i
n
n
−
− −
15 3 / 2 6
19
10 3
5.23 10 300 exp 2 86 10 300
2.718 10 exp 21.
1.5 10 cm
i
i
n
n
−
−
15 3 / 2 6
19
14 3
5.23 10 500 exp 2 86 10 500
5.847 10 exp 12.
1.63 10 cm
i
i
n
n
−
−
Germanium.
15 3 / 2 18 6
3
1.66 10 100 exp 1.66 10 exp 38. 2 86 10 100
35.9 cm
i
i
n
n
−
−
15 3 / 2 18 6
13 3
1.66 10 300 exp 8.626 10 exp 12. 2 86 10 300
2.40 10 cm
i
i
n
n
−
−
15 3 / 2 19 6
15 3
1.66 10 500 exp 1.856 10 exp 7. 2 86 10 500
8.62 10 cm
i
i
n
n
−
−
(a) n-type; cm ;
15 no = 10
15
2 132
o
i o n
n p cm
− 3
(b) n-type; cm ;
15 no = 10
15
2 102
o
i o n
n p cm
− 3
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
a. Add Donors 15 3 7 10 cm d
− = ×
6 3 2 10 cm / o i d n N
− b. Want p = =
2 6 15
2 3
exp
i n
Eg B T kT
21
2 21 15 3 6
7 10 5.23 10 exp 86 10
−
By trial and error, T ≈ 324 °K
5 = Ε= ⇒ =
−
(b)
4
3
= ×
−
−
ρ
ρ
V/cm
1
= Ε⇒ = cm
16 19
− n
n d d e
e N N μ
σ σ μ cm
− 3
(a)
15 19
− μ μρ
ρ
n
d n d e
e N
cm
− 3
J = ρ J ρ
V/cm
(a)
15 19
− n
n d d e
e N N μ
σ σ μ cm
− 3
(b)
16 19
− p
a e
cm
− 3
19 1.6 10 8500 n d d σ e μ N N
− ≅ = ×
15 19 3 4 1 10 10 1.36 1.36 10 d N cm σ cm
− − ≤ ≤ ⇒ ≤ ≤ × Ω −
3 2
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
cm
2
n
p D cm /s
2
16 12 19 =− ⎟
−
dx
dn J eD n n A/cm
2
12 16 19 =− ⎟
−
dx
dp J eD p p A/cm
2
Total diffusion current density
A/cm
2 J =− 52 − 18. 72 =− 70. 7
15
19 15
4
/
10 exp
exp 10 10
p
p p
p p p
p p
x L p
dp J eD dx
x eD L L
x J L
J e
−
−
−
(a) x = 0
2 J (^) p =2.4 A/cm
1 2 J (^) p 2.4 e 0.883 A/cm
− = =
3 2 2.4 0.119 A/cm p J e
− = =
a.
17 3 17 3 N (^) a 10 cm po 10 cm
− − = ⇒ =
2 2 6 5 3 17
3.24 10 cm 10
i o o o
n n n p
− −
b.
5 15 15 3
17 15 17 3
3.24 10 10 10 cm
10 10 1.01 10 cm
o
o
n n n n
p p p p
− −
−
2 ln
i
a d bi T n
15 15
= ⎥
Vbi = V
17 15
=
⎥
bi
18 18
=
⎥
bi
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
( )( ) ( )( )
14 3 / 2 6
2.1 10 exp 2 86 10
n i T T
−
2 ln
a d bi T i
n
T ni Vbi
200 1.256 1.
250 6.02 × 10
3
(^300) 1.80 × 10
6
(^350) 1.09 × 10
8
(^400) 2.44 × 10 9
10
(^500) 2.00 × 10
11
1/ 2
R j jo bi
− ⎛ ⎞ = (^) ⎜ + ⎟
⎝ ⎠
( )
( )( )
( )
16 15
10 2
0.026 ln 0.684 V 1.5 10
bi
(a) (^) ( )
1/ 2 1 0.4 1 0.255 pF
j
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
(b) (^) ( )
1/ 2 3 0.4 1 0.172 pF
j
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
(c) (^) ( )
1/ 2 5 0.4 1 0.139 pF
C j
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
(a)
1 2
/
R j jo bi
− ⎛ ⎞ = (^) ⎜ + ⎟
⎝ ⎠
For VR = 5 V ,
1 2 5 (0 02) 1 0 00743 0 8
/
j C.. p .
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
For VR = 1.5 V ,
1 2 1 5 (0 02) 1 0 0118 0 8
/
j
C.. p .
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
j
C avg. pF
t / C C C C v t v final v initial v final e
− τ = + −
where 3 1
− = = = × ×
2
or 10
− = ×
t /i vC t. e
− τ = = + −
1 / 1
ln 1.5 1.
r e t
τ τ
10 1 t 5.44 10 s
− = ×
(b) For VR = 0 V, Cj = Cjo = 0.02 pF
1/ 2
0.02 1 0.
j C p
− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠
j C avg pF
10 6.72 10 j
− = = ×
t / C C C C v t v final v initial v final e
− τ = + −
2 /^2 / 3.5 5 (0 5) 5 1
t t e e
− τ − τ = + − = −
so that
10 2 t 8.09 10 s
− = ×
1 / 2
−
bi
R j jo V
15 17
=
⎥
Vbi = V
For VR = 1 V,
C (^) j = pF
For VR = 3 V,
j C pF
For = 5 V, R
j C pF
(a)
3 12
− − o o f LC
f
MHz
(b)
f f MHz o o
3 12
− −
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
13 14 1 5. 37 10
10 exp
− − ⎥=− × ⎦
(v) A
13 10
− ID ≅−
(vi) A
13 10
− ID ≅−
S
D D T I
V V ln
6
= ⎟
−
−
V (^) D V
6
= ⎟
−
−
V (^) D V
3
= ⎟
−
−
V (^) D V
(ii) 1 0. 018
5 10 10 exp
12 11 ⎥⇒ =− ⎦
− − D
D V
6
= ⎟
−
−
V (^) D V
6
= ⎟
−
−
V (^) D V
3
= ⎟
−
−
V (^) D V
(ii) 1 0. 00274
10 10 exp
14 13 ⎥⇒ =− ⎦
− − D
D V
(a)
10 exp
15 I (^) S 2.03 10 A
− = ×
(b)
12 4.45 10
− ×
14 9.50 10
− ×
10 2.08 10
− ×
13 6.50 10
− ×
0.4 (^) 9.75 × 10 −^9 4.45 × 10 −^12
5 2.14 10
− ×
10 2.08 10
− ×
3 10
− 9 1.42 10
− ×
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
(a) 12 10 S
VD (v) ID (A) log 10 ID
11 4 68_._ 10
− × −10 3_._
0.20 (^) 2 19_._ × 10 −^9 −8 66_._
6 4 80_._ 10
− × −5 32_._
4 2 25_._ 10
− × −3 65_._
0.60 (^) 1 05_._ × 10 −^2 −1 98_._
(b) 14 10 S
VD (v) ID (A) log 10 ID
13 4 68_._ 10
− × −12 3_._
0.20 (^) 2 19_._ × 10 −^11 −10 66_._
− ×
8 4 80_._ 10
− × −7 32_._
6 2 25_._ 10
− × −5 65_._
0.60 (^) 1 05_._ × 10 −^4 −3 98_._
− ×
a.
2 2 1
1
10 exp
ln (10) 59.9 mV 60 mV
D D D
D T
D T D
D −
D −
2 10 exp
9 ⎟⇒ ⎠
− I (^) D mA
2 10 exp
9 ⎟⇒ ⎠
− D
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
IS doubles for every 5C increase in temperature. 12 I (^) S 10 A
− = at T = 300K
For
12 I (^) S 0.5 10 A T 295 K
− = × ⇒ =
For
12 50 10 , (2) 50 5.
n S I A n
− = × = ⇒ =
Where n equals number of 5C increases.
So 295 ≤ T ≤328.2 K
S T
S
Δ = Δ = −
S
S
T T
T T
9
9 8
13
3
exp (100) 0. (2.147 10 ) ( 55) 0. exp
D
D
D
D
(a) PS D D
6
−
5 10 exp
11 D D
By trial and error,
(b)
11 5 10
− ≅−× D
D
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
( )
4 10 2 10 D D = I × + V and (^) ( ) 12
0.026 ln 10
D D
−
Trial and error.
VD (v) ID (A) VD (v)
0.50 (^) 4.75 × 10 −^4 0.
4 4.7415 10
− × 0.
4 4.740 10
− × 0.
0.4740 mA
D
D
13 I (^) s 5 10 A
− = ×
2
1 2
TH
0.45 , ln
D D TH D D T S
By trial and error:
2.56 A, 0.402 V D D
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
(a) Assume diode is conducting.
Then, VD = V (^) γ=0.7 V
So that 2
R
I = ⇒. μ A
1
R
I μ A
Then 1 2
D R R
Or 26 7 D
(b) Let R 1 (^) = 50 k ΩDiode is cutoff.
D
Since , 0 D D
γ
At node VA :
A A D
At node V (^) B = VA − V γ
(^5) ( ) ( )
A r A r D
So
(^5) ( ) 5
A r (^) A A A
r
)
A
Multiply by 6:
10 − (^2) ( VA − Vr (^) ) + 15 − 6 V (^) A = (^3) ( VA − Vr
r r
(a) 0.6 V r
11 V (^) A = 25 + 5 0.6 ( ) = 28 ⇒ VA =2.545 V
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
From (1)
A A D A
D
= − = − ⇒ Neg. ⇒ ID = 0
Both (a), (b) 0 D
B D
O i
D
i
(c) VO = 0. 7 V; I (^) D 1 = Ii ; I (^) D 2 = 0 ; for 0 ≤ I (^) i ≤ 2 mA
Minimum diode current for VPS (min)
(min) 2 , 0. D D I = mA V = V
2 1 2 1
1
We have I 1^ =^ I^ 2 + ID
so (1)
1 2
Maximum diode current for VPS (max)
P = I VD D 10 = ID (^) ( 0 7_._ (^) )⇒ I (^) D =14 3_. mA_
1 2 D
or
1 2
Using Eq. (1), (^1)
1 1
. R. k R R
Then R 2 (^) = 82 5_._ Ω 82 5_._ Ω
(a) (i) 0. 215 20
I = mA, VO = 0. 7 V
(ii) 0. 220 20
I = mA, VO = 0. 6 V
(b) (i)
O
(iii)
O
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
a.
0 026 k 26 1
0 05 50 A peak-to-peak
(26)(50) A 1 30 mV peak-to-peak
T d DQ
d DQ
d d d d
i. I
v i v.
τ
μ
τ μ
b. For
0 1 mA 260 0 1
DQ d
= ⇒ τ = = Ω
0 05 5 A peak-to-peak d DQ i =. I = μ
(260)(5) V 1 30 mV peak-to-peak d d d d
(a) 1
DQ
T d I
r k Ω
(b) = ⇒ 100 Ω
r d
(c) = ⇒ 10 Ω
d r
a. diode resistance d T r = V / I
d T d S d S T S
T d s o T S
r V I v v r R V R I
v v v V IR
v S
b. RS = 260 Ω
( )( )
0 0
0 0
0 0
1 mA, 0 0909 0 026 (1)(0 26)
0 1 mA, 0 50 0 026 0 1 0 26
0 01 mA. 0 909 0 026 (0 01)(0 26)
T
S T S S
s S
S S
v V. v I. v V IR.. v
v. v I.. v... v
v. v I.. v... v
Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1
By D. A. Neamen Problem Solutions
pn junction diode
3
= ⎟
−
−
V D V
Schottky diode
3
= ⎟
−
−
D
Schottky: exp
a S T
3
7
ln (0.026) ln 5 10
a T S
−
−
Then
of pn junction 0.1796 0.
a
3 0 5 10
exp exp 0 026
S a
T
− × = = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜^ ⎟ ⎝ ⎠ ⎝ ⎠
12 4 87 10 A S
− = ×
(a)