Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Problems Solutions for Microelectronics: Circuit Analysis and Design | ECE 2204, Study notes of Basic Electronics

Solutions Manual: Microelectronics 4th, Neamen Material Type: Notes; Class: Electronics; Subject: Electrical & Computer Engineer; University: Virginia Polytechnic Institute And State University; Term: Fall 2015;

Typology: Study notes

2014/2015

Uploaded on 12/03/2015

dannydutton2
dannydutton2 🇺🇸

5

(3)

1 document

1 / 664

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Microelectronics: Circuit Analysis and Design, 4th edition Chapter 1
By D. A. Neamen Problem Solutions
______________________________________________________________________________________
Chapter 1
1.1
/2
3/2 g
E
kT
i
nBTe
=
(a) Silicon
(i)
()
()
()
()
[]
3/2
15
6
19
83
1.1
5.23 10 250 exp 286 10 250
2.067 10 exp 25.58
1.61 10 cm
i
i
n
n
⎡⎤
⎢⎥
×
⎢⎥
⎣⎦
(ii)
()
()
()
()
[]
3/2
15
6
19
11 3
1.1
5.23 10 350 exp 286 10 350
3.425 10 exp 18.27
3.97 10 cm
i
i
n
n
⎡⎤
⎢⎥
×
⎢⎥
⎣⎦
(b) GaAs
(i)
()
()
()
()
()
[]
3/2
14
6
17
33
1.4
2.10 10 250 exp 2 86 10 250
8.301 10 exp 32.56
6.02 10 cm
i
i
n
n
×
(ii)
()
()
()
()
()
[]
3/2
14
6
18
83
1.4
2.10 10 350 exp 286 10 350
1.375 10 exp 23.26
1.09 10 cm
i
i
n
n
⎡⎤
⎢⎥
×
⎢⎥
⎣⎦
______________________________________________________________________________________
1.2
a. 3/2 exp 2
i
Eg
nBT kT
⎛⎞
=⎜⎟
⎝⎠
12 15 3/ 2
6
1.1
10 5.23 10 exp 2(86 10 )( )
TT
⎛⎞
⎜⎟
×
⎝⎠
3
43/2 6.40 10
1.91 10 expTT
⎛⎞
×
×=
⎜⎟
⎝⎠
By trial and error,
368 KT
b.
93
10 cm
i
n
=
()
()
9153/2
6
1.1
10 5.23 10 exp 286 10
TT
⎛⎞
⎜⎟
⎜⎟
×
⎝⎠
3
73/2 6.40 10
1.91 10 expTT
⎛⎞
×
×=
⎜⎟
⎝⎠
By trial and error,
268 KTš
______________________________________________________________________________________
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Partial preview of the text

Download Problems Solutions for Microelectronics: Circuit Analysis and Design | ECE 2204 and more Study notes Basic Electronics in PDF only on Docsity!

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


Chapter 1

3 / 2 Eg^ / 2 kT ni BT e

(a) Silicon

(i) (^) ( )( ) ( )( )

[ ]

15 3 / 2 6

19

8 3

5.23 10 250 exp 2 86 10 250

2.067 10 exp 25.

1.61 10 cm

i

i

n

n

= × ⎢ ⎥

⎢ × ⎥

= × −

= ×

(ii) (^) ( )( )

( )(^ )

[ ]

15 3 / 2 6

19

11 3

5.23 10 350 exp 2 86 10 350

3.425 10 exp 18.

3.97 10 cm

i

i

n

n

= × ⎢^ ⎥

⎢ × ⎥

= × −

= ×

(b) GaAs

(i) (^) ( )( )

( )(^ )

( ) [ ]

14 3 / 2 6

17

3 3

2.10 10 250 exp 2 86 10 250

8.301 10 exp 32.

6.02 10 cm

i

i

n

n

= × ⎢^ ⎥

⎢ × ⎥

= × −

= ×

(ii) (^) ( )( )

( )(^ )

( ) [ ]

14 3 / 2 6

18

8 3

2.10 10 350 exp 2 86 10 350

1.375 10 exp 23.

1.09 10 cm

i

i

n

n

= × ⎢^ ⎥

⎢ × ⎥

= × −

= ×

______________________________________________________________________________________

a.

3 / 2 exp 2

i

Eg n BT kT

12 15 3 / 2 6

10 5.23 10 exp 2(86 10 )( )

T

T

= ×

⎝ × ⎠

3 4 3 / 2 6.40^10 1.91 10 T exp T

− ⎛^ × ⎞

× = −

By trial and error, T ≈368 K

b.

9 3 ni 10 cm

( )( )

9 15 3 / 2 6

10 5.23 10 exp 2 86 10

T

T

= × ⎜^ ⎟

⎜ × ⎟

3 7 3 / 2 6.40^10 1.91 10 T exp T

− ⎛^ × ⎞

× = ⎜ − ⎟

By trial and error, T ≈ 268 °K


Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


Silicon

(a) ( )( )

( ) [^ ]

15 3 / 2 6

18

10 3

5.23 10 100 exp 2 86 10 100

5.23 10 exp 63.

8.79 10 cm

i

i

n

n

− −

= × ⎢^ ⎥

⎢ × ⎥

= × −

= ×

(b) ( )( )

( )(^ )

( ) [ ]

15 3 / 2 6

19

10 3

5.23 10 300 exp 2 86 10 300

2.718 10 exp 21.

1.5 10 cm

i

i

n

n

= × ⎢ ⎥

⎢ × ⎥

= × −

= ×

(c) ( )( )

( ) [^ ]

15 3 / 2 6

19

14 3

5.23 10 500 exp 2 86 10 500

5.847 10 exp 12.

1.63 10 cm

i

i

n

n

= × ⎢ ⎥

⎢ × ⎥

= × −

= ×

Germanium.

(a) ( )( )

( )(^ )^

( ) [^ ]

15 3 / 2 18 6

3

1.66 10 100 exp 1.66 10 exp 38. 2 86 10 100

35.9 cm

i

i

n

n

= × ⎢^ ⎥= × −

⎢ × ⎥

(b) ( )( )

( )(^ )^

( ) [ ]

15 3 / 2 18 6

13 3

1.66 10 300 exp 8.626 10 exp 12. 2 86 10 300

2.40 10 cm

i

i

n

n

= × ⎢^ ⎥= × −

⎢ × ⎥

= ×

(c) ( )( )

( ) [ ]

15 3 / 2 19 6

15 3

1.66 10 500 exp 1.856 10 exp 7. 2 86 10 500

8.62 10 cm

i

i

n

n

= × ⎢ ⎥= × −

⎢ × ⎥

= ×

______________________________________________________________________________________

(a) n-type; cm ;

15 no = 10

− 3 (^ )^11

15

2 132

  1. 76 10 10

= ×

×

o

i o n

n p cm

− 3

(b) n-type; cm ;

15 no = 10

− 3 (^ )^5

15

2 102

  1. 25 10 10

= ×

×

o

i o n

n p cm

− 3

______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


a. Add Donors 15 3 7 10 cm d

N

− = ×

6 3 2 10 cm / o i d n N

− b. Want p = =

So ( )( )

2 6 15

2 3

exp

i n

Eg B T kT

= × = ×

21

( )(^ )

2 21 15 3 6

7 10 5.23 10 exp 86 10

T

T

× = × ⎜^ ⎟

⎜ × ⎟

By trial and error, T ≈ 324 °K

______________________________________________________________________________________

(a) ( 10 )( 1. 5 )( 10 ) 0. 15 mA

5 = Ε= ⇒ =

I A σ I

(b)

4

3

= ×

×

A

A I

I

ρ

ρ

V/cm

______________________________________________________________________________________

1

  1. 67 18

= Ε⇒ = cm

J

J σ σ

16 19

= ×

×

n

n d d e

e N N μ

σ σ μ cm

− 3

______________________________________________________________________________________

(a)

15 19

= ×

×

− μ μρ

ρ

n

d n d e

N

e N

cm

− 3

(b) ⇒Ε= =( 0. 65 )( 160 ) = 104

J = ρ J ρ

V/cm

______________________________________________________________________________________

(a)

15 19

= ×

×

n

n d d e

e N N μ

σ σ μ cm

− 3

(b)

16 19

= ×

×

p

a e

N

cm

− 3

______________________________________________________________________________________

(a) For n-type, ( )( )

19 1.6 10 8500 n d d σ e μ N N

− ≅ = ×

For ( )

15 19 3 4 1 10 10 1.36 1.36 10 d N cm σ cm

− − ≤ ≤ ⇒ ≤ ≤ × Ω −

(b) ( )

3 2

J = σ E = σ 0.1 ⇒ 0.136 ≤ J ≤ 1.36 × 10 A cm /

______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


cm

2

=( 0. 026 )( 1250 ) = 32. 5 /s;

n

D =( 0. 026 )( 450 ) = 11. 7

p D cm /s

2

16 12 19 =− ⎟

= = ×

dx

dn J eD n n A/cm

2

12 16 19 =− ⎟

= − =− ×

dx

dp J eD p p A/cm

2

Total diffusion current density

A/cm

2 J =− 52 − 18. 72 =− 70. 7

______________________________________________________________________________________

15

19 15

4

/

10 exp

exp 10 10

p

p p

p p p

p p

x L p

dp J eD dx

x eD L L

x J L

J e

× ⎛ − ⎞

×

(a) x = 0

2 J (^) p =2.4 A/cm

(b) x = 10 μm

1 2 J (^) p 2.4 e 0.883 A/cm

− = =

(c) x = 30 μm

3 2 2.4 0.119 A/cm p J e

− = =

______________________________________________________________________________________

a.

17 3 17 3 N (^) a 10 cm po 10 cm

− − = ⇒ =

2 2 6 5 3 17

3.24 10 cm 10

i o o o

n n n p

− −

×

= = ⇒ = ×

b.

5 15 15 3

17 15 17 3

3.24 10 10 10 cm

10 10 1.01 10 cm

o

o

n n n n

p p p p

− −

= + = × + ⇒ =

= + = + ⇒ = ×

______________________________________________________________________________________

2 ln

i

a d bi T n

NN

V V

(a) (i) ( )

  1. 026 ln 102

15 15

= ⎥

×

× ×

Vbi = V

(ii) ( )

  1. 026 ln 102

17 15

=

×

×

bi

V V

(iii) ( )

  1. 026 ln 102

18 18

=

×

bi

V V

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


( )( ) ( )( )

14 3 / 2 6

2.1 10 exp 2 86 10

n i T T

= × ⎜^ ⎟

⎜ × ⎟

2 ln

a d bi T i

N N

V V

n

T ni Vbi

200 1.256 1.

250 6.02 × 10

3

(^300) 1.80 × 10

6

(^350) 1.09 × 10

8

(^400) 2.44 × 10 9

450 2.80 × 10

10

(^500) 2.00 × 10

11

______________________________________________________________________________________

1/ 2

R j jo bi

V

C C

V

− ⎛ ⎞ = (^) ⎜ + ⎟

⎝ ⎠

( )

( )( )

( )

16 15

10 2

0.026 ln 0.684 V 1.5 10

bi

V

⎡ × × ⎤

⎢ × ⎥

(a) (^) ( )

1/ 2 1 0.4 1 0.255 pF

j

C

− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠

(b) (^) ( )

1/ 2 3 0.4 1 0.172 pF

j

C

− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠

(c) (^) ( )

1/ 2 5 0.4 1 0.139 pF

C j

− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠


(a)

1 2

/

R j jo bi

V

C C

V

− ⎛ ⎞ = (^) ⎜ + ⎟

⎝ ⎠

For VR = 5 V ,

1 2 5 (0 02) 1 0 00743 0 8

/

j C.. p .

− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠

F

For VR = 1.5 V ,

1 2 1 5 (0 02) 1 0 0118 0 8

/

j

C.. p .

− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠

F

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


j

C avg. pF

t / C C C C v t v final v initial v final e

− τ = + −

where 3 1

τ RC RC j ( avg ) (47 10 )(0 00962. 10 )

− = = = × ×

2

or 10

τ 4 52. 10 s

− = ×

Then ( ) 1 5 0 ( 5 0 )

t /i vC t. e

− τ = = + −

1 / 1

ln 1.5 1.

r e t

τ τ

10 1 t 5.44 10 s

− = ×

(b) For VR = 0 V, Cj = Cjo = 0.02 pF

For VR = 3.5 V, ( )

1/ 2

0.02 1 0.

j C p

− ⎛ ⎞ = + = ⎜ ⎟ ⎝ ⎠

F

j C avg pF

10 6.72 10 j

τ RC avg s

− = = ×

t / C C C C v t v final v initial v final e

− τ = + −

2 /^2 / 3.5 5 (0 5) 5 1

t t e e

− τ − τ = + − = −

so that

10 2 t 8.09 10 s

− = ×

______________________________________________________________________________________

1 / 2

bi

R j jo V

V

C C ; ( )

  1. 026 ln 102

15 17

=

×

×

Vbi = V

For VR = 1 V,

C (^) j = pF

For VR = 3 V,

j C pF

For = 5 V, R

V

j C pF

(a)

3 12

× ×

− − o o f LC

f

MHz

(b)

f f MHz o o

3 12

× ×

− −

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


(iv) (^ )^

13 14 1 5. 37 10

  1. 026

10 exp

− − ⎥=− × ⎦

I D = A

(v) A

13 10

ID ≅−

(vi) A

13 10

ID ≅−

______________________________________________________________________________________

S

D D T I

I

V V ln

(a) (i) ( ) 0. 359

  1. 026 ln 11

6

= ⎟

⎛ ×

V (^) D V

  1. 026 ln 11

6

= ⎟

⎛ ×

V (^) D V

  1. 026 ln 11

3

= ⎟

V (^) D V

(ii) 1 0. 018

  1. 026

5 10 10 exp

12 11 ⎥⇒ =− ⎦

− × =

− − D

D V

V

V

(b) (i) ( ) 0. 479

  1. 026 ln 13

6

= ⎟

⎛ ×

V (^) D V

  1. 026 ln 13

6

= ⎟

⎛ ×

V (^) D V

  1. 026 ln 13

3

= ⎟

V (^) D V

(ii) 1 0. 00274

  1. 026

10 10 exp

14 13 ⎥⇒ =− ⎦

− − D

D V

V

V

______________________________________________________________________________________

(a)

10 exp

I S

− ⎛^ ⎞

15 I (^) S 2.03 10 A

− = ×

(b)

V D I D ( A ) ( n = 1) I D ( A ) ( n = 2 )

0.1 9.50 × 10 −^14 1.39 × 10 −^14

12 4.45 10

− ×

14 9.50 10

− ×

10 2.08 10

− ×

13 6.50 10

− ×

0.4 (^) 9.75 × 10 −^9 4.45 × 10 −^12

0.5 4.56 × 10 −^7 3.04 × 10 −^11

5 2.14 10

− ×

10 2.08 10

− ×

3 10

− 9 1.42 10

− ×

______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


(a) 12 10 S

I A

VD (v) ID (A) log 10 ID

11 4 68_._ 10

− × −10 3_._

0.20 (^) 2 19_._ × 10 −^9 −8 66_._

0.30 1 03. × 10 −^7 −6 99.

6 4 80_._ 10

− × −5 32_._

4 2 25_._ 10

− × −3 65_._

0.60 (^) 1 05_._ × 10 −^2 −1 98_._

0.70 4 93. × 10 −^1 −0 307.

(b) 14 10 S

I A

VD (v) ID (A) log 10 ID

13 4 68_._ 10

− × −12 3_._

0.20 (^) 2 19_._ × 10 −^11 −10 66_._

− ×

8 4 80_._ 10

− × −7 32_._

6 2 25_._ 10

− × −5 65_._

0.60 (^) 1 05_._ × 10 −^4 −3 98_._

− ×

______________________________________________________________________________________

a.

2 2 1

1

10 exp

ln (10) 59.9 mV 60 mV

D D D

D T

D T D

I V V

I V

V V V

b. Δ V D = VT ln 100( ) ⇒ Δ V D = 119.7 mV ≈120 mV

______________________________________________________________________________________

(a) (i) (^ )^0.^539

  1. 026 ln 9

×

D

V V

(ii) ( ) 0. 599

  1. 026 ln 9

×

D

V V

(b) (i) ( ) 9. 60

2 10 exp

9 ⎟⇒ ⎠

= ×

I (^) D mA

(ii) ( ) 144

2 10 exp

9 ⎟⇒ ⎠

= ×

D

I A

______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


IS doubles for every 5C increase in temperature. 12 I (^) S 10 A

− = at T = 300K

For

12 I (^) S 0.5 10 A T 295 K

− = × ⇒ =

For

12 50 10 , (2) 50 5.

n S I A n

− = × = ⇒ =

Where n equals number of 5C increases.

Then Δ T = ( 5.64)( 5 ) =28.2 K

So 295 ≤ T ≤328.2 K

______________________________________________________________________________________

2 , 155 C

S T

S

I T

T

I

Δ = Δ = −

S

S

I

I

= = ×

@100 C 373 K 0.

T T

V ° ⇒ ° ⇒ V =

@ 55 C 216 K 0.

T T

V − ° ⇒ ° ⇒ V =

9

9 8

13

3

exp (100) 0. (2.147 10 ) ( 55) 0. exp

D

D

D

D

I

I

I

I

= × ×

× ×

×

= ×

______________________________________________________________________________________

(a) PS D D

V = I R + V

= I D ( ) + VD ;

6

= ×

  1. 026

5 10 exp

11 D D

V

I

By trial and error,

VD = 0. 282 V, I D = 2. 52 μA

(b)

A, V

11 5 10

− ≅−× D

I =− 2. 8

D

V

______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


( )

4 10 2 10 D D = I × + V and (^) ( ) 12

0.026 ln 10

D D

I

V

Trial and error.

VD (v) ID (A) VD (v)

0.50 (^) 4.75 × 10 −^4 0.

4 4.7415 10

− × 0.

4 4.740 10

− × 0.

0.5194 V

0.4740 mA

D

D

V

I

______________________________________________________________________________________

13 I (^) s 5 10 A

− = ×

2

1 2

(1.2) (1.2) 0.45 V

TH

R

V

R R

⎝ +^ ⎠ ⎝^ ⎠

0.45 , ln

D D TH D D T S

I

I R V V V

I

By trial and error:

2.56 A, 0.402 V D D

I = μ V =

______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


______________________________________________________________________________________

(a) Assume diode is conducting.

Then, VD = V (^) γ=0.7 V

So that 2

R

I = ⇒. μ A

1

R

I μ A

Then 1 2

D R R

I = I − I = −.

Or 26 7 D

I =. μ A

(b) Let R 1 (^) = 50 k ΩDiode is cutoff.

D

V = ⋅. =

. V

Since , 0 D D

V V I

γ

______________________________________________________________________________________

At node VA :

A A D

V V

I

At node V (^) B = VAV γ

(^5) ( ) ( )

A r A r D

V V V V

I

So

(^5) ( ) 5

A r (^) A A A

− V − V ⎡ − V V ⎤ V − V

r

)

A

Multiply by 6:

10 − (^2) ( VAVr (^) ) + 15 − 6 V (^) A = (^3) ( VAVr

r r

+ V + V = V

(a) 0.6 V r

V =

11 V (^) A = 25 + 5 0.6 ( ) = 28 ⇒ VA =2.545 V

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


From (1)

A A D A

V V

D

I V I

= − = − ⇒ Neg. ⇒ ID = 0

Both (a), (b) 0 D

I =

VA = 2.5,

5 2 V 0.50 V

B D

V = ⋅ = ⇒ V =

______________________________________________________________________________________

(a) ( ) 1 ; ; for mA

O i

V = I = 0

D

I 0 ≤ ≤ 0. 7

i

I

VO = 0. 7 V; I D = ( Ii − 0. 7 ) mA; for Ii ≥ 0. 7 mA

(b) VO = Ii ( ) 1 ; I D = 0 ; for 0 ≤ I i ≤ 1. 7 mA

VO = 1. 7 V; I D = ( Ii − 1. 7 ) mA; for Ii ≥ 1. 7 mA

(c) VO = 0. 7 V; I (^) D 1 = Ii ; I (^) D 2 = 0 ; for 0 ≤ I (^) i ≤ 2 mA

______________________________________________________________________________________

Minimum diode current for VPS (min)

(min) 2 , 0. D D I = mA V = V

2 1 2 1

I I

R R

1

R

We have I 1^ =^ I^ 2 + ID

so (1)

1 2

R R

Maximum diode current for VPS (max)

P = I VD D 10 = ID (^) ( 0 7_._ (^) )⇒ I (^) D =14 3_. mA_

1 2 D

I = I + I

or

1 2

R R

Using Eq. (1), (^1)

1 1

. R. k R R

Then R 2 (^) = 82 5_._ Ω 82 5_._ Ω

______________________________________________________________________________________

(a) (i) 0. 215 20

I = mA, VO = 0. 7 V

(ii) 0. 220 20

I = mA, VO = 0. 6 V

(b) (i)

I = mA, =( 0. 2325 )( 20 ) − 5 =− 0. 35

O

V V

(iii)

I = mA, =( 0. 235 )( 20 ) − 5 =− 0. 30

O

V V

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


a.

0 026 k 26 1

0 05 50 A peak-to-peak

(26)(50) A 1 30 mV peak-to-peak

T d DQ

d DQ

d d d d

V.

I

i. I

v i v.

τ

μ

τ μ

b. For

0 1 mA 260 0 1

DQ d

I.

= ⇒ τ = = Ω

0 05 5 A peak-to-peak d DQ i =. I = μ

(260)(5) V 1 30 mV peak-to-peak d d d d

v = i τ = μ ⇒ v =.

______________________________________________________________________________________

(a) 1

  1. 026

DQ

T d I

V

r k Ω

(b) = ⇒ 100 Ω

  1. 26

r d

(c) = ⇒ 10 Ω

  1. 6

d r

______________________________________________________________________________________

a. diode resistance d T r = V / I

d T d S d S T S

T d s o T S

r V I v v r R V R I

V

v v v V IR

⎛ ⎞ ⎜^ / ⎟

v S

b. RS = 260 Ω

( )( )

0 0

0 0

0 0

1 mA, 0 0909 0 026 (1)(0 26)

0 1 mA, 0 50 0 026 0 1 0 26

0 01 mA. 0 909 0 026 (0 01)(0 26)

T

S T S S

s S

S S

v V. v I. v V IR.. v

v. v I.. v... v

v. v I.. v... v

⎝ +^ ⎠ +

______________________________________________________________________________________

Microelectronics: Circuit Analysis and Design, 4 edition Chapter 1

By D. A. Neamen Problem Solutions


pn junction diode

  1. 026 ln 13

3

= ⎟

×

×

V D V

Schottky diode

  1. 026 ln 8

3

= ⎟

×

×

D

V V

______________________________________________________________________________________

Schottky: exp

a S T

V

I I

V

3

7

ln (0.026) ln 5 10

a T S

I

V V

I

V

⎛ ⎞ ⎛ × ⎞

×

Then

of pn junction 0.1796 0.

a

V = +

3 0 5 10

exp exp 0 026

S a

T

I.

I

V.

V.

− × = = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜^ ⎟ ⎝ ⎠ ⎝ ⎠

12 4 87 10 A S

I.

− = ×

______________________________________________________________________________________

(a)