Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Math 104 - Spring 2007 Test 1 Solutions, Exams of Algebra

Solutions for math 104 test 1 held in spring 2007. It includes questions related to graphing linear functions, finding slopes, intercepts, and equations of lines, and estimating collisions using linear models. Students are advised to show their work for full credit.

Typology: Exams

Pre 2010

Uploaded on 08/18/2009

koofers-user-f50
koofers-user-f50 🇺🇸

5

(1)

10 documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Math 104 Test 1 (Chapters 1 – 3) Spring 2007 Name_____________________________
Always show enough work to show how you arrived at your answer. If work is not shown, you may not
earn full credit for the problem.
1. Hot coffee is poured into a cup at room temperature. Let F represent the temperature of the coffee t
minutes after the coffee was poured. Sketch a qualitative graph that shows the relationship between
the variables. (4 pts.)
2. Let
1.5 4y x
.
a. What is the slope of this line? _______ (2 pts.)
b. What is the y intercept? _______ (2 pts.)
c. Sketch the graph. (4 pts.)
d. What is the slope of a line parallel to this line? _______ (2 pts.)
e. What is the slope of a line perpendicular to this line? _______ (2 pts.)
3. Find the x-intercept for the line
2 5 3( 1) 4y x
. (4 pts.)
x-intercept = _____________
4. Use interval notation for the inequality
3x
. (3 pts.)
[26]
5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4 5
-1
-2
-3
-4
pf3
pf4

Partial preview of the text

Download Math 104 - Spring 2007 Test 1 Solutions and more Exams Algebra in PDF only on Docsity!

Math 104 Test 1 (Chapters 1 – 3) Spring 2007 Name_____________________________ Always show enough work to show how you arrived at your answer. If work is not shown, you may not earn full credit for the problem.

  1. Hot coffee is poured into a cup at room temperature. Let F represent the temperature of the coffee t minutes after the coffee was poured. Sketch a qualitative graph that shows the relationship between the variables. (4 pts.)
  2. Let y^ 1.5^ x ^4. a. What is the slope of this line? _______ (2 pts.) b. What is the yintercept? _______ (2 pts.) c. Sketch the graph. (4 pts.) d. What is the slope of a line parallel to this line? _______ (2 pts.) e. What is the slope of a line perpendicular to this line? _______ (2 pts.)
  3. Find the x - intercept for the line 2 y^ ^5 3(^ x 1)^ ^4. (4 pts.) x -intercept = _____________
  4. Use interval notation for the inequality x  3. (3 pts.) 5 4 3 2 1 -4 -3 -2 -1 0 1 2 3 4 5
  1. Some values for a linear equation are provided in the table. Complete the table. (6 pts) x y 0 1 2 2 3 4 5 14
  2. Give the equation for each of these lines. (3 points each)
  3. a. Explain why the graph shown is the graph of a function. (3 pts.) Let this be the graph of the function y^ ^ f^ (^ x ). Find the following. (2 points each) b. f^ (0)= ________ c. a value of x such that f^ (^ x^ )^ ^2 _______
  4. Let g x (^ )^^ ^ 2.5^ x ^10. Find the following. (2 points each) a. g^ (0)= __________ b. g^ ( 8.4)^ = __________ [26] 4321 -3-2-101234-1-2-3 4321 -3-2-101234-1-2-3 4321 -3-2-101234-1-2- 321 -3-2-101234-1-2-
  1. USave Car Rental Company charges a flat daily fee of $40 plus $0.20 per mile for a pickup truck rental. Let C x (^ )^ represent the daily cost (in dollars) of renting a pickup truck that is driven x miles. a. Find the slope of the function C x (^ )^. What does it represent in terms of the rental cost? (4 pts.) b. Find an equation for C x (^ )^. (4 pts.)
  2. Solve this system by graphing. Write your solution as an ordered pair. (6 pts.) yx  (^1). 2 4 3 y   x
     (ordered pair) 
  3. Solve the system. Write your solution as an ordered pair. (6 pts.) 3 x  2 y  12 4 y  2  7 x _________________________ (ordered pair)
  4. Solve the inequality. 2(^ x^ ^ 3.1)^ 4.7^ x ^ 5.9 (6 pts.) 5 4 3 2 1 -3 -2 -1 0 1 2 3 4