Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Practice Questions on Calculus I - Quiz #4 | MATH 1540, Quizzes of Calculus

Material Type: Quiz; Professor: Brown Jr; Class: Calculus I; Subject: Mathematics; University: East Georgia College; Term: Fall 2007;

Typology: Quizzes

Pre 2010

Uploaded on 08/04/2009

koofers-user-0yw
koofers-user-0yw 🇺🇸

10 documents

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Math 1540 Quiz 4 Practice Fall 2007
Name: Last ____________________. First ____________________
You must show your work and/or provide explanations for your answers for all questions.
Otherwise, no credit will be given.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Use a finite approximation to estimate the area under the graph of the given function on the stated interval as instructed.
1)
f(x) = x
2
between x = 0 and x = 3 using an upper sum with two rectangles of equal width.
A)
3.375
B)
C)
12.5
D)
1)
Write the sum without sigma notation and evaluate it.
2)
4
k = 1
2 sin π
k
A)
2 sin π + 2 sin
π
2 + 2 sin
π
3 + 2 sin
π
4 = 6 + 2
B)
2 sin π + 2 sin
π
2 + 2 sin
π
3 + 2 sin
π
4 = 2 + 3 + 2
C)
2 sin π + 2 sin π
2 + 2 sin π
3 + 2 sin π
4 = 1 + 3 + 2
2
D)
2 sin π + 2 sin
π
4 = 2
2)
Solve the problem.
3)
Suppose that g is continuous and that
6
2
g(x) dx = 12
and
9
2
g(x) dx = 16.
Find
6
9
g(x) dx
.
A)
-
4
B)
28
C)
-
28
D)
4
3)
Evaluate the integral.
4)
4
0
2 x
dx
A)
16
B)
4
C)
24
D)
32
3
4)
5)
2
1
t + 1
t
2
dx
A)
15
2
B)
29
6
C)
37
6
D)
5
6
5)
1
pf3
pf4
pf5

Partial preview of the text

Download Practice Questions on Calculus I - Quiz #4 | MATH 1540 and more Quizzes Calculus in PDF only on Docsity!

Math 1540 Quiz 4 Practice Fall 2007

Name: Last ____________________. First ____________________

You must show your work and/or provide explanations for your answers for all questions.

Otherwise, no credit will be given.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Use a finite approximation to estimate the area under the graph of the given function on the stated interval as instructed.

  1. f(x) = x

between x

0 and x

3 using an upper sum with two rectangles of equal width.

A) 3.375 B) 16.875 C) 12.5 D) 8.

Write the sum without sigma notation and evaluate it.

k = 1

2 sin

π

k

A) 2 sin π + 2 sin

π

  • 2 sin

π

  • 2 sin

π

B) 2 sin π

2 sin

π

2 sin

π

2 sin

π

C) 2 sin π

2 sin

π

2 sin

π

2 sin

π

D) 2 sin π + 2 sin

π

Solve the problem.

  1. Suppose that g is continuous and that

g(x) dx = 12

and

g(x) dx = 16.

Find

g(x) dx

A)

4 B) 28 C)

28 D) 4

Evaluate the integral.

2 x

dx

A) 16 B) 4 C) 24 D)

t

t

dx

A)

B)

C)

D)

Find the derivative.

  1. y =

x

10x + 5 dt

A)

10x + 5

B)

(10x + 5)3/ C) 10x + 5 D) 10x + 5 - 5

  1. y =

x

cos t dt

A) - 4x

cos (x

) B) 4x

cos (x

) C) 1 - cos (x

) D) - sin (x

x

e(t

  1. dt

A)

e

x+ 1

  • e

2 x1/

B)

e

x+ 1

2 x1/

C) e

x+ 1 D) ex

Find the total area of the region between the curve and the x-axis.

  1. y = x

(x - 2)

; 0 ≤ x ≤ 2

A)

B)

C)

D)

Find the area of the shaded region.

A)

B)

C)

D)

A)

B)

C)

D)

dt

3(tan

1 t)(

  • t2)

A) 3 cot

t

C B)

3(tan

  • 1 t)

C

C)

ln tan

  • 1t
    • C D) ln 3 tan

t + C

Evaluate the integral by using multiple substitutions.

  1. 3(3x
    1. sin5 (x

      7x) cos (x - 7x)

dx

A)

sin6 (x

  • 7x) + C B) 15 sin

(x

7x)

C

C)

cos6 (3x2) + C D) 2 sin

(x

  • 7x) + C

Use the substitution formula to evaluate the integral.

3 π/

π

sin θ dθ

2 + cos θ

A)

ln 2 B)

  • ln 3 C) 0 D) ln 3

Find the area of the shaded region.

  1. f(x) = x
  • x
  • 6x

x -5 -4 -3 -2 -1 1 2 3 4 5

y 30

25

20

15

10

5

(-4, -24)

(0, 0)

(3, 18)

x -5 -4 -3 -2 -1 1 2 3 4 5

y 30

25

20

15

10

5

(-4, -24)

(0, 0)

(3, 18)

g(x)

6x

A)

B)

C)

D)

  1. y = 2x
  • x - 6 y = x

x -4 -3 -2 -1 1 2 3 4

y 5 4 3 2 1

x -4 -3 -2 -1 1 2 3 4

y 5 4 3 2 1

A)

B)

C)

D)

Find the volume of the solid generated by revolving the shaded region about the given axis.

  1. About the x-axis

x 1 2 3 4 5

y 20

16

12

8

4

x 1 2 3 4 5

y 20

16

12

8

4

y = 9 - x

A) 18 π B)

π C)

π D)

π