Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Practice Exam 1 - College Algebra | MATH 101, Exams of Algebra

Material Type: Exam; Class: College Algebra (GM); Subject: Mathematics; University: Harford Community College; Term: Spring 2009;

Typology: Exams

Pre 2010

Uploaded on 08/18/2009

koofers-user-gim
koofers-user-gim ๐Ÿ‡บ๐Ÿ‡ธ

10 documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Harford Community College Name____________________
STEM Division Date_____________________
Spring 2009 Instructor: S. Rook
MATH 101: College Algebra โ€“ Practice Exam I; Chapters P.6 โ€“ 2
You will be given the following formulas to use on the exam โ€“ you will have to
memorize anything not here:
Quadratic Equation:
a
acbb
x
2
4
2
โˆ’ยฑโˆ’
=
Std. Eq. of a Quad:
(
)
khxaxf +โˆ’=
2
)(
Distance Formula:
( ) ( )
2
21
2
21
yyxxd โˆ’+โˆ’=
Midpoint Formula:
๏ฃท
๏ฃธ
๏ฃถ
๏ฃฌ
๏ฃญ
๏ฃซ++
=2
,
2
2121
yyxx
M
Std. Eq. of a Circle:
(
)
(
)
2
22
rkyhx =โˆ’+โˆ’
Vertex Formula:
( )
hfk
a
b
h=
โˆ’
=;
2
Slope Formula:
12
12
xx
yy
mโˆ’
โˆ’
=
Point-slope Formula:
(
)
11
xxmyy โˆ’=โˆ’
Slope-intercept form:
bmxy
+
=
Standard form:
CByAx
=
+
1) Divide โ€“
leave in a + bi format
:
i
i
5
1
45
+
โˆ’
2) Determine the value of the following โ€“
only use i, -1, -i, or 1
:
i
484
3) Solve the following:
7234 =+โˆ’x
4) Solve
by completing the square
: 2
x
2
โ€“ 8
x
โ€“ 48 = 0
5) Solve
by using the quadratic formula
:
163
2
โˆ’=โˆ’ xx
6)
Solve
,
graph
on a number line, AND
write in interval notation
: -8x + 3 > 1 โ€“ 4(x โ€“ 5)
7) Solve โ€“
exclude any extraneous solution
: 553 =โˆ’+ xx
8) Solve
by factoring
over the complex numbers: 024273
24
=++ xx
9) Give the equation of the circle
in standard form
with center point (-1, -4) and passing
through the point (-2, -2)
pf3
pf4

Partial preview of the text

Download Practice Exam 1 - College Algebra | MATH 101 and more Exams Algebra in PDF only on Docsity!

Harford Community College Name____________________

STEM Division Date_____________________

Spring 2009 Instructor: S. Rook

MATH 101: College Algebra โ€“ Practice Exam I; Chapters P.6 โ€“ 2

You will be given the following formulas to use on the exam โ€“ you will have to

memorize anything not here:

Quadratic Equation:

a

b b ac x 2

2 โˆ’ ยฑ โˆ’ = Std. Eq. of a Quad: f x = a ( x โˆ’ h ) + k

2 ( )

Distance Formula: ( ) ( )

2 1 2

2 d = x 1 โˆ’ x 2 + y โˆ’ y Midpoint Formula: (^) ๏ฃท ๏ฃธ

x 1 x 2 y 1 y 2 M

Std. Eq. of a Circle: ( ) ( )

(^2 ) x โˆ’ h + y โˆ’ k = r Vertex Formula: k f ( ) h a

b h =

Slope Formula:

2 1

2 1

x x

y y m โˆ’

= Point-slope Formula: y โˆ’ y 1 = m ( x โˆ’ x 1 )

Slope-intercept form: y = mx + b Standard form: Ax + By = C

  1. Divide โ€“ leave in a + bi format : i

i

  1. Determine the value of the following โ€“ only use i , -1, - i , or 1 : i

484

  1. Solve the following: 4 x โˆ’ 3 + 2 = 7

  2. Solve by completing the square : 2 x

2

  • 8 x โ€“ 48 = 0
  1. Solve by using the quadratic formula : 3 6 1

2 x โˆ’ x =โˆ’

  1. Solve , graph on a number line, AND write in interval notation : -8 x + 3 > 1 โ€“ 4( x โ€“ 5)

  2. Solve โ€“ exclude any extraneous solution : x + 3 x โˆ’ 5 = 5

  3. Solve by factoring over the complex numbers: 3 27 24 0

4 2 x + x + =

  1. Give the equation of the circle in standard form with center point (-1, -4) and passing

through the point (-2, -2)

  1. Find the equation of a line in slope-intercept form that passes through the following

points: (2, -2) and (4, -14)

  1. Determine the domain of f ( x )= 5 x โˆ’ 8

  2. Determine the domain of ( ) 1

2 g x = x โˆ’

  1. Determine the domain of 2 24

2

  • โˆ’

x x

x hx

  1. Determine the domain of 12 1

2 โˆ’ โˆ’

x x

x F x

  1. Graph y = | x | + 2 using a table of values โ€“ show the work

In 16) โ€“ 20), given that f ( x ) = x โ€“ 4 and g ( x ) = 2 x

2

  • x โ€“ 1, find the following:
  1. ( f + g )( x )

  2. ( f โˆ’ g )( x )

  3. ( f โ‹… g )( x )

  4. ( g o f )( x )

  5. ( f o g )( 1 )

Use ( ) 2 8 4

2 f x = โˆ’ x โˆ’ x โˆ’ for 21) โ€“ 26):

  1. Find the vertex of f ( x ) โ€“ use either method

  2. Which direction does the parabola f ( x ) open?

  3. Determine the maximum or minimum value of f ( x )

  4. Give the y-intercept and the x-intercepts (if real; otherwise, show they are not real)

  5. Use the information gathered in 21) โ€“ 24) along with the axis of symmetry and some

additional points to graph f ( x ) โ€“ you MUST show the axis of symmetry on the graph

  1. State the domain AND range of f ( x )

3 2 x โˆ’ x + x + 19) 2 17 35

2 x โˆ’ x +

  1. Down 23) 4

24) y-intercept: (0, -4) x-intercepts: (โˆ’ 2 โˆ’ 2 , 0 ) and(โˆ’ 2 + 2 , 0 )

26) Domain: ( โˆ’ โˆž,+โˆž ) Range: ( โˆ’โˆž, 4 ]