Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

PHYS261 Cumulative Lab exam questions with answers, Exams of Physiology

PHYS261 Cumulative Lab exam questions with answers

Typology: Exams

2024/2025

Available from 07/04/2025

Achieverr
Achieverr 🇺🇸

4.3

(7)

9.3K documents

1 / 21

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
PHYS261 |\Cumulative |\Lab |\exam |\questions |\
with |\answers
$A$5 |\means? |\- |\CORRECT |\ANSWERS |\✔✔Fixed |\cell
How |\to |\plot |\cartesian |\coordinates |\- |\CORRECT |\ANSWERS |\✔✔Scatter |\
chart
Solver |\- |\CORRECT |\ANSWERS |\✔✔Minimizes |\or |\maximizes |\a |\cell |\by |\
varying |\other |\cells
To |\use |\a |\macro, |\you |\may |\have |\to |\first: |\- |\CORRECT |\ANSWERS |\✔✔Go |\
to |\view |\tab |\and |\click |\on |\the |\macro |\button
To |\exit |\a |\lab |\template: |\- |\CORRECT |\ANSWERS |\✔✔Enter |\name |\and |\
section |\number |\and |\save |\file |\using |\macro
You |\measure |\the |\length |\of |\the |\same |\side |\of |\a |\block |\five |\times |\and |\
find: |\b=11.0, |\11.1, |\11.2, |\11.2, |\and |\11.3 |\mm. |\What |\is |\the |\best |\
estimate |\for |\b? |\- |\CORRECT |\ANSWERS |\✔✔11.16 |\mm
Take |\the |\average
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15

Partial preview of the text

Download PHYS261 Cumulative Lab exam questions with answers and more Exams Physiology in PDF only on Docsity!

PHYS261 |\Cumulative |\Lab |\exam |\questions |\

with |\answers

$A$5 |\means? |- |\CORRECT |\ANSWERS |\✔✔Fixed |\cell How |\to |\plot |\cartesian |\coordinates |- |\CORRECT |\ANSWERS |\✔✔Scatter |
chart Solver |- |\CORRECT |\ANSWERS |\✔✔Minimizes |\or |\maximizes |\a |\cell |\by |
varying |\other |\cells To |\use |\a |\macro, |\you |\may |\have |\to |\first: |- |\CORRECT |\ANSWERS |\✔✔Go |
to |\view |\tab |\and |\click |\on |\the |\macro |\button To |\exit |\a |\lab |\template: |- |\CORRECT |\ANSWERS |\✔✔Enter |\name |\and |
section |\number |\and |\save |\file |\using |\macro You |\measure |\the |\length |\of |\the |\same |\side |\of |\a |\block |\five |\times |\and |
find: |\b=11.0, |\11.1, |\11.2, |\11.2, |\and |\11.3 |\mm. |\What |\is |\the |\best |
estimate |\for |\b? |- |\CORRECT |\ANSWERS |\✔✔11.16 |\mm Take |\the |\average

You |\measure |\the |\length |\of |\the |\same |\side |\of |\a |\block |\five |\times |\and |
each |\measurement |\has |\an |\uncertainty |\of |\0.10 |\mm. |\What |\is |\the |
uncertainty |\in |\the |\best |\estimate |\for |\b? |- |\CORRECT |\ANSWERS |
✔✔0. =0.10/sqrt(5) Yoy |\measure |\the |\lengths |\of |\three |\sides |\of |\a |\block |\and |\find |\a=12. |\mm, |\b=14.51 |\mm, |\c=7.45 |\mm |\with |\an |\error |\of |+-0.030 |\mm |\in |\each |\measurement. |\What |\is |\the |\uncertainty |\in |\the |\volume |\of |\the |\block? |- |\CORRECT |\ANSWERS |\✔✔6.8 |\mm^ (DeltaV/V)^2=(deltaa/a)^2+(deltab/b)^2+(deltac/c)^ A |\block |\is |\measured |\to |\have |\mass |\M=25.3 |\g |\and |\volume |\V=9.16 |
cm3 |\with |\an |\uncertainty |\of |\deltaM=0.050 |\g |\in |\the |\mass |\and |
deltaV=0.050 |\cm3 |\in |\the |\volume. |\What |\is |\the |\uncertainty |\in |\the |
density? |- |\CORRECT |\ANSWERS |\✔✔0.016 |\g/cm (Deltap/p)^2=(deltaM/M)^2+(deltaV/V)^ A |\block |\is |\measured |\to |\have |\a |\density |\p=2.76 |\g/cm3 |\with |\an |
uncertainty |\of |\deltap=0.030 |\g/cm3. |\Find |\chi-squared |\when |\the |
measured |\density |\is |\compared |\to |\the |\accepted |\density |\p=2. |\g/cm3. |- |\CORRECT |\ANSWERS |\✔✔Chi-squared= Chi-squared=sum((xi-xtheory)/deltaxi)^

Chidist(2.83,1)=0. USE |\EXCEL |\FOR |\CHIDIST Two |\carts |\approach |\each |\other, |\collide, |\and |\stick |\together |\after |\the |
collision. |\This |\is |\an |\example |\of |\what |\type |\of |\collision: |- |\CORRECT |
ANSWERS |\✔✔Perfectly |\inelastic |\collision Two |\carts |\collide |\and |\bounce |\off |\each |\other. |\If |\there |\are |\no |
external |\forces |\acting |\on |\the |\system: |- |\CORRECT |\ANSWERS |\✔✔The |
total |\kinetic |\energy |\can |\change |\during |\the |\collision |\but |\the |\total |
momentum |\of |\the |\carts |\must |\be |\the |\same |\before |\and |\after |\the |
collision. A |\cart |\with |\mass |\0.30 |\kg |\and |\velocity |\0.20 |\m/s |\collided |\on |\an |\air- track |\with |\a |\cart |\with |\mass |\0.40 |\kg |\and |\velocity |-0.10 |\m/s. |\What |\is |
the |\final |\velocity |\in |\m/s |\of |\the |\two |\carts |\if |\they |\stick |\together? |- |
CORRECT |\ANSWERS |\✔✔0.029 |\m/s m1v1+m2v2=(m1+m2)vf What |\provides |\the |\vertical |\force |\to |\balance |\the |\force |\of |\gravity |\on |
the |\pendulum |\bob? |- |\CORRECT |\ANSWERS |\✔✔Tension |\in |\the |\string What |\is |\the |\maximum |\height |\y |\that |\the |\pendulum |\can |\reach |\in |\this |\experiment? |- |\CORRECT |\ANSWERS |\✔✔y0+L

(From |\surface |\to |\the |\bottom |\of |\the |\pendulum |\plus |\the |\length |\of |
the |\pendulum Find |\the |\theoretical |\value |\for |\the |\rotation |\period |\for |\a |\pendulum |
bob |\with |\height |\y=0.070 |\m, |\length |\L=0.20 |\m, |\y0=0.020 |\m, |\and |
extension |\arm |\length |\r0=0.020 |\m. |\Use |\g=9.801 |\m/s2. |- |\CORRECT |
ANSWERS |\✔✔0.834 |\s Period |(tau)=2pisqrt((rsqrt(L^2-(r-r0)^2))/(g(r-r0))) r=r0+Lsin(theta) One |\radian |\is |\equal |\to |\how |\many |\degrees? |- |\CORRECT |\ANSWERS |
✔✔57.3 |\degrees (180/pi) The |\small |\angle |\approximation |\says |\that |\sin(theta)=theta (THETA |\MUST |\BE |\IN |\RADIANS). |\Find |\the |\percentage |\error |(sin(theta)- theta)/theta |\this |\approximation |\introduces |\for |\an |\angle |\of |\0.020 |
radians. |- |\CORRECT |\ANSWERS |\✔✔-0. Using |\g=9.801 |\m/s^2, |\find |\the |\period |\of |\a |\1.000 |\m |\long |\pendulum. |- |\CORRECT |\ANSWERS |\✔✔2.007 |\s T=2
pi*sqrt(L/g)

f=0-->theta= f=f0-->theta= f>>f0-->theta= Find |\x0 |\when |\A0=1.00 |\mm, |\f=1.40 |\Hz, |\f0=1.45 |\Hz, |\and |\Q=80.0. |- |
CORRECT |\ANSWERS |\✔✔x0=7.26 |\mm x0=(A0/2)/sqrt((f^2/(Q^2f0^2))+(f^2/f0^2-1)^2) KEEP |\IN |\MILLIMETERS Find |\theta |\in |\degrees |\when |\f=1.47 |\Hz, |\f0=1.44 |\Hz, |\and |\Q=90.0. |\The |
value |\of |\theta |\should |\be |\specific |\to |\lie |\within |\the |\range |\of |\ 0 |\to |\ 180 |\degrees. |- |\CORRECT |\ANSWERS |\✔✔ 165 |\degrees Theta=arctan((1/Q)
((ff0)/(f0^2-f^2))) Consider |\a |\1.5 |\m |\long |\string |\with |\linear |\mass |\density |\of |\0.0010 |
kg/m |\and |\a |\tension |\of |\0.50 |\N. |\Find |\the |\frequency |\in |\Hz |\of |\the |
fundamental |\mode |\of |\the |\string. |- |\CORRECT |\ANSWERS |\✔✔7.45 |\Hz v=sqrt(T/mu) v=wavelength
frequency

The |\function |\that |\is |\plotted |\as |\a |\line |\on |\the |\log-log |\graph |\to |\the |
right |\is |\a |\power-law |\function |\of |\the |\form |\y=ax^n. |\From |\this |\plot, |
what |\is |\the |\value |\of |\a? |- |\CORRECT |\ANSWERS |\✔✔a=y-intercept The |\function |\that |\is |\plotted |\as |\a |\line |\on |\the |\log-log |\graph |\to |\the |
right |\is |\a |\power-law |\function |\of |\the |\form |\y=a
x^n. |\From |\this |\plot, |
what |\is |\the |\value |\of |\n? |- |\CORRECT |\ANSWERS |
✔✔n=(log(y2)-log(y1))/(log(x2)-log(x1)) Consider |\the |\properties |\of |\a |\string |\that |\has |\a |\length |\of |\1.0 |\m |\and |
a |\wave |\speed |\of |\ 45 |\m/s. |\What |\is |\the |\fundamental |\frequency |\of |\the |\string? |- |\CORRECT |\ANSWERS |\✔✔22.5 |\Hz v=wavelengthfrequency Suppose |\there |\are |\100.0 |\cm3 |\of |\nitrogen |\at |\a |\temperature |\of |\0.0 |
degrees |\Celsius |\and |\a |\pressure |\of |\1.500
10^5 |\Pa. |\How |\many |\miles |
of |\nitrogen |\are |\there? |- |\CORRECT |\ANSWERS |\✔✔n=0. PV=nRT R=8.31 |\if |\Pa |\and |\m^ R=0.082 |\if |\atm |\and |\L

Suppose |\that |\you |\wanted |\to |\reduce |\the |\resonant |\frequency |\of |\the |
system, |\what |\could |\you |\do? |- |\CORRECT |\ANSWERS |\✔✔Reduce |\the |
mass Tosc=fosc=(2pi)/sqrt((2k/m)-(b/(2m))^2) A |\student |\measures |\the |\four |\lowest |\resonant |\frequencies |\of |\the |
string |\as |\ 12 |\Hz, |\ 25 |\Hz, |\ 35 |\Hz, |\and |\50.0 |\Hz, |\with |\node-to-node |
spacing |\of |\2.0 |\m, |\1.0 |\m, |\0.67 |\m, |\and |\0.50 |\m. |\Calculate |\the |\wave |
velocity |\for |\each |\of |\the |\four |\different |\modes. |- |\CORRECT |\ANSWERS |
✔✔v1=48 |\m/s v2=50 |\m/s v3=46.9 |\m/s v4=50 |\m/s v=wavelength
frequency Suppose |\that |\the |\temperature |\of |\the |\bulb |\in |\the |\Charles' |\law |
apparatus |\increases |\from |\0.0 |\to |\100.0 |\degrees |\C. |\By |\what |
multiplicative |\factor |\will |\the |\pressure |\increase |\by? |- |\CORRECT |
ANSWERS |\✔✔1. PV=nRT P2/P1=T2/T

T |\MUST |\BE |\IN |\KELVINS

Starting |\at |\20.0 |\degrees |\C, |\to |\what |\temperature |\would |\you |\have |\to |\raise |\the |\Charles |\law |\apparatus |\to |\double |\the |\pressure? |- |\CORRECT |\ANSWERS |\✔✔T2=313.15 |\degrees |\C T2=(P2/P1)*T T |\MUST |\BE |\IN |\KELVINS Experiment |\2: |\errors Purpose: |- |\CORRECT |\ANSWERS |\✔✔To |\learn |\how |\to |\estimate |
uncertainty |\in |\measurements, |\how |\to |\do |\error |\propagation, |\and |
why |\it |\is |\important |\to |\understand |\the |\uncertainty |\in |\measurements Experiment |\3: |\X, |\V, |\and |\A Purpose: |- |\CORRECT |\ANSWERS |\✔✔To |\determine |\the |\value |\of |\g |\from |\measured |\values |\of |\X |\and |\determine |\if |\it |\agrees |\with |\the |\theory |
value |\of |\9. Experiment |\4: |\Momentum |\and |\Drag |- |\CORRECT |\ANSWERS |\✔✔To |
observe |\the |\drag |\force |\and |\conservation |\of |\momentum Experiment |\5: |\Centripetal |\Motion |- |\CORRECT |\ANSWERS |\✔✔To |
measure |\an |\object |\undergoing |\centripetal |\acceleration

(+-0.1 |\mm) Suppose |\the |\air-track |\is |\tilted |\at |\an |\angle |\of |\0.01 |\radians |\from |
level, |\what |\will |\be |\the |\acceleration |\of |\a |\friction-less |\cart? |- |\CORRECT |\ANSWERS |\✔✔0.097998 |\m/s a=g*sin(theta) Explain |\how |\the |\optical |\picket |\fence |\works |\and |\how |\this |\system |\can |\find |\the |\velocity |\of |\the |\cart. |- |\CORRECT |\ANSWERS |\✔✔When |\the |
cart |\moves |\through |\an |\optical |\gate, |\the |\dark |\parts |\of |\the |\picket |
fence |\block |\the |\sensor |\beam. |\The |\gates |\keep |\track |\of |\when |\the |
light |\intensity |\changed |\and |\the |\use |\the |\know |\distance |\between |\the |\pickets |\to |\find |\the |\speed |\of |\the |\cart. How |\can |\it |\happen |\that |\when |\two |\carts |\collide |\in |\this |\experiment |
that |\the |\total |\momentum |\of |\the |\two |\carts |\is |\not |\conserved? |- |
CORRECT |\ANSWERS |\✔✔There |\could |\be |\external |\forces |\working |\on |
the |\system. The |\table |\below |\lists |\the |\position |\versus |\time |\for |\a |\cart |\moving |\on |
a |\tilted |\air-track. |\Use |\the |\spreadsheet |\to |\calculate |\and |\plot |\the |
velocity |\versus |\time |\and |\acceleration |\versus |\time. |- |\CORRECT |
ANSWERS |\✔✔Find |\average |\velocity |\and |\average |\acceleration |(will |
have |\one |\fewer |\velocities |\than |\positions |\and |\one |\fewer |
accelerations |\than |\velocities). |\Use |\excel |\to |\plot.

If |\the |\motor |\is |\turning |\at |\ 3000 |\rpm |\and |\the |\gear |\steps |\this |\motion |\down |\by |\a |\factor |\of |\27, |\what |\is |\the |\frequency |\of |\the |\rotation |\of |
the |\mass |\in |\Hz? |- |\CORRECT |\ANSWERS |\✔✔1.85 |\Hz (3000/60)/ Make |\a |\sketch |\that |\shows |\how |\the |\period |\of |\the |\rotating |\mass |
varies |\with |\the |\radius |\of |\the |\masses |\orbit. |- |\CORRECT |\ANSWERS |
✔✔Near |\r=0, |\tau |\approaches |\infinity. |\Quickly |\levels |\off |\and |
plateaus, |\then |\decreases |\quickly |\again |\approaching |\negative |\infinity. Using |\your |\spreadsheet |\and |\the |\following |\formula |__________, |\find |
the |\theoretical |\value |\for |\the |\rotation |\period |\for |\the |\mass |\when |\the |
height |\of |\the |\mass |\is |\y=0.07 |\m, |\pendulum |\length |\L=0.20 |\m, |
minimum |\height |\y0=0.02 |\m, |\the |\extension |\arm |\length |\r0=0.02 |\m, |
and |\g=9.801 |\m/s2. |- |\CORRECT |\ANSWERS |\✔✔DRAW |\OUT |
APPARATUS!! Solve |\for |\r |\in |\terms |\of |\L, |\y, |\and |\y Use |\excel |\to |\solve |\for |\tau |(rotation |\period) What |\effect |\does |\the |\weight |\of |\the |\bob |\have |\in |\this |\experiment? |- |
CORRECT |\ANSWERS |\✔✔The |\weight |\provides |\a |\restoring |\force |\on |
the |\pendulum. |\It |\increases |\tension |\but |\does |\not |\affect |\frequency, |
period, |\or |\length. |\The |\bob |\is |\pulled |\down |\by |\the |\same |\gravitational

Explain |\how |\you |\could |\measure |\the |\Q |\of |\the |\resonance |\in |\this |
system. |- |\CORRECT |\ANSWERS |\✔✔Record |\the |\oscillations, |\find |\f0 |\by |
finding |\the |\period |\and |\taking |\the |\inverse |(1/period), |\find |\the |
damping |\time |(td, |\time |\where |\amplitude |\is |\1/3 |\max |\amplitude), |
then |\plug |\into |\equation: |\Q=2pif0td/ Suppose |\that |\you |\wanted |\to |\decrease |\the |\resonance |\frequency |\of |
the |\system, |\what |\could |\you |\do? |- |\CORRECT |\ANSWERS |\✔✔Reduce |
the |\mass What |\is |\the |\relationship |\between |\the |\frequency |\of |\a |\wave |\and |\its |
wavelength? |- |\CORRECT |\ANSWERS |\✔✔v=wavelength
frequency Sketch |\the |\shape |\of |\the |\spring |\when |\it |\is |\excited |\in |\the |\third |
harmonic. |- |\CORRECT |\ANSWERS |\✔✔ 3 |\anti |\nodes |\and |\ 4 |\nodes A |\student |\measures |\wave |\speeds |\of |\ 5 |\m/s, |\ 7 |\m/s, |\ 10 |\m/s, |\and |\ 15 |
m/s |\for |\tensions |\of |\ 1 |\N, |\2N, |\ 4 |\N, |\and |\ 9 |\N. |\Use |\the |\spreadsheet |\to |
make |\a |\log |\log |\plot |\of |\the |\wave |\speed |\versus |\the |\tension. |\Also |\find |\the |\slope |\of |\the |\resulting |\line. |- |\CORRECT |\ANSWERS |\✔✔Take |\log |\of |\both |\variables. |\Plot. |\Add |\trendline |\with |\equation. Without |\using |\a |\thermometer, |\how |\can |\you |\establish |\a |\temperature |\of |\ 100 |\degrees |\C? |- |\CORRECT |\ANSWERS |\✔✔Boil |\water

Use |\the |\thermometer |\to |\accurately |\measure |\room |\temperature |\and |\estimate |\the |\uncertainty |\in |\this |\measurement. |- |\CORRECT |
ANSWERS |\✔✔About |\ 20 |\degrees |\Celsius Uncertainty: |
Using |\Charles |\Law |\Apparatus: |\deltaT=0.003T+. Using |\thermometer: |\deltaT=0.5 |\or |\0.25 |\of |\smallest |\division What |\does |\absolute |\zero |\temperature |\mean? |- |\CORRECT |\ANSWERS |
✔✔The |\temperature |\at |\which |\the |\pressure |\of |\an |\ideal |\gas |\would |\be |\zero |(0 |\Kelvins) Using |\the |\Charles' |\Law |\apparatus, |\a |\student |\finds |\pressures |\of |\760, |\840, |\ 950 |\mm |\of |\Hg |\at |\temperatures |\of |\26, |\57, |\and |\ 100 |\degrees |
Celsius. |\Use |\the |\spreadsheet |\to |\make |\a |\plot |\of |\P |\versus |\T |\and |\find |
the |\slope |\of |\the |\resulting |\straight |\line. |\Does |\the |\data |\agree |\with |
Charles' |\Law? |\Briefly |\explain. |- |\CORRECT |\ANSWERS |\✔✔Plot |\in |\excel. |
Linear |\relationship-->P=C
T Using |\the |\ruler, |\and |\without |\using |\the |\vernier |\calipers, |\estimate |
how |\precisely |\you |\can |\measure |\the |\length |\of |\one |\of |\the |\sides |\of |
one |\of |\the |\blocks. |- |\CORRECT |\ANSWERS |\✔✔To |\within |\0.5 |\mm |\or |
0.25 |\mm

mv=mv Using |\the |\ruler, |\how |\precisely |\can |\you |\measure |\the |\length |\of |\the |
pendulum? |- |\CORRECT |\ANSWERS |\✔✔0.5 |\mm |\or |\0.25 |\mm Measure |\the |\time |\for |\ 20 |\swings |\of |\the |\pendulum. |\What |\is |\the |
period? |- |\CORRECT |\ANSWERS |\✔✔Use |\Logitech. |
Period=time |\for |\one |\swing Why |\is |\it |\important |\to |\keep |\the |\angle |\small |\in |\this |\experiment? |
Explain. |- |\CORRECT |\ANSWERS |\✔✔If |\the |\angle |\is |\small, |\the |\small |
angle |\approximation |\allows |\for |\tau=-mgLtheta To |\what |\uncertainty |\can |\the |\drive |\frequency |\be |\determined |\in |\this |
experiment? |- |\CORRECT |\ANSWERS |\✔✔About |\0.00033 |\Hz |\because |\it |
can |\measure |\down |\to |\ 1 |\mHz Measure |\the |\resonant |\frequency |\of |\this |\system. |- |\CORRECT |
ANSWERS |\✔✔Find |\period |(time |\between |\two |\maximums), |\then |\take |
inverse. Suppose |\that |\you |\wanted |\to |\increase |\the |\quality |\factor |\Q |\of |\the |
system, |\what |\could |\you |\do? |- |\CORRECT |\ANSWERS |\✔✔The |\mass |
could |\be |\increased.

How |\is |\the |\spacing |\between |\nodes |\of |\a |\standing |\wave |\related |\to |
the |\wavelength? |- |\CORRECT |\ANSWERS |\✔✔Wavelength=2spacing |
between |\two |\nodes How |\is |\the |\velocity |\of |\the |\wave |\related |\to |\the |\mass |\hanging |\off |\the |\end? |- |\CORRECT |\ANSWERS |\✔✔v=sqrt((mg)/mu) How |\precisely |\can |\you |\measure |\temperature |\in |\the |\Charles' |\Law |
apparatus? |\How |\precisely |\can |\you |\measure |\the |\pressure? |- |
CORRECT |\ANSWERS |\✔✔.01 |\degrees |\Celsius .01 |\kPa DeltaT=0.003
T+0. DeltaP=Pavg/ Explain |\how |\you |\can |\use |\the |\Charles' |\Law |\apparatus |\to |\determine |
the |\absolute |\zero |\temperature. |- |\CORRECT |\ANSWERS |\✔✔Plotting |
temperature |\vs |\pressure |\yields |\a |\linear |\line. |\The |\y |\intercept |\of |\the |
line |\would |\be |\the |\slope |\multiplied |\by |\absolute |\zero. Using |\the |\Boyle's |\Law |\apparatus, |\a |\student |\finds |\volumes |\of |\40, |\30, |\20, |\and |\ 15 |\cm3 |\at |\pressures |\of |\7.5, |\10, |\15, |\and |\ 20 |\lb/in^2. |\Use |\the |\spreadsheet |\to |\make |\a |\log |\log |\plot |\of |\P |\versus |\V |\and |\find |\the |\