









Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Each formula and error is for one sub-interval with N 1 data/node/integration points. We can extend the interval to [a,b] by summing integrals and errors (error increases by one order). Numerical Integration, Simpson’s 1/3 Rule, Error, Extended Simpson’s 1/3 Rule, Newton Cotes Closed Formulae, Newton Cotes Open Formulae, Lagrange Quadratic Interpolation
Typology: Slides
1 / 17
This page cannot be seen from the preview
Don't miss anything!
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
o
2
79
f
x (
h
x
2
x
o
f
0
f
1
x
0
x
1 f
(x)
g(x)
f
2
x
2
h
h
x
0
x
1
=h
x
2
=2h
coordinate shift
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
⇒ ⇒ ⇒
g x
f
o
o
x (
f
^1
^1
x (
f
^2
^2
x (
o
x (
x
x
1
x
x
2
x
o
x
1
x
o
x
2
o
x (
x
2
hx
h
2
h
2
^1
x (
x
x
o
x
x
2
x
1
x
o
x
1
x
2
^1
x (
hx
x
2
h
2
^2
x (
x
x
o
x
x
1
x
2
x
o
x
2
x
1
^2
x (
x
2
hx
h
2
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
⇒
h --- 3
f
o
f
^1
f
^2
f
x (
x
h --- 3
f
o
f
^1
f
^2
d
0 2
h
f
x (
f
o
f
^1
f
^2
x
1
h
f
x (
f
^1
x
h
f
1 (
)
1
x
h
2
f
2 (
)
1
x
h
3
f
3 (
)
1
x
h
4
f
4 (
)
1
O x
h
5
f
o
f
^1
h f
1 (
)
1
h
2
f
^1
2 (
)
h
3 6
f
3 (
)
1
h
4
f
4 (
)
1
O h
5
f
^1
f
^1
f
^2
f
^1
h f
1 (
)
1
h
2
f
2 (
)
1
h
3 ----^6
f
3 (
)
1
h
4
f
4 (
)
1
O h
5
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
⇒ ⇒
f
^1
x
h
f
1 (
)
1
x
h
2
f
2 (
)
1
x
h
3
f
3 (
)
1
x
h
4
f
4 (
)
1
O x
h
5
x d
0 2
h
h --- 3
f
^1
h f
1 (
)
1
h
2
f
2 (
)
1
h
3 6
f
3 (
)
1
h
4
f
^1
4 (
)
O h
5
f
^1
f
^1
h f
^1
1 (
)
h
2
f
^1
2 (
)
h
3 6
f
3 (
)
1
h
4
f
4 (
)
1
O h
5
h
f
^1
h
2
h
2
f
1 (
)
1
h
3
h
3
f
2 (
)
1
h
4
h
4
f
3 (
)
1
h
5
h
5
f
4 (
)
1
O h
6
h --- 6 3
f
^1
h
2
f
2 (
)
1
h
4
f
4 (
)
1
O h
5
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
80
f a
0
f
1
f
2
f
N b
x
f
(x)
f
3
f
4
f
(x)
sub-int. 1
h
h
sub-int. 2
h
h
b
a
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
⇒
⇒
f
x (
x d
h --- 3
f
o
f
^1
f
^2
f
^2
f
^3
f
^4
f
^4
f
^5
f
^6
f
N
4
f
N
3
f
N
2
f
N
2
f
N
1
f
N
a b
,
[
]
h --- 3
f
o
f
^1
f
^2
f
^3
f
^4
f
^5
f
N
2
f
N
1
f
N
a b
, [
]
h --^3
f a
f b
f a
ih
+
f a
ih
+
i^
2 2
,
N =
2
i^
1 2
,
N =
1
a b
,
[
]
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
⇒
⇒
h
a b
h
b
a
b
a
a b
,
[
]
h
5 ----- 90
b
a
f
4 (
)
a b
,
[
]
h
4
-------- 180
b
a
f
4 (
)
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
f
0
f
1
f
2
f
N
h
= x
0
x
s
x
1
x
2
= x
N
x
E
g(x)
f
x (
x d
x
S x
α
h w
o
f
o
w
1
f
^1
w
2
f
^2
w
N
f
N
f
i
f
x
i
(
x
i
x
S
ih
h
x
N
x
o
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
a b
g x
Exact for
f
2 (
)
f
4 (
)
f
4 (
)
f
6 (
)
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
82
N f
x (
g x
x
o
x
1
,
[
]
x
1
x
2
,
[
]
f
0
f
1
f
2
x
0
x
1
x
g(x)^2
f
(x)
E[x
0
,x
1
E[x
1
,x
2
x
1
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
Error compared to closed
interval
Interval size compared to
closed interval
f
x (
x d
x
S x
α
h w
0
f
^0
w
1
f
^1
w
N
f
N
α
w
i
i
h
3
f
2 (
)
h
5
f
4 (
)
h
5
f
4 (
)
CE 341/441 - Lecture 18 - Fall 2004
p. 18.
a b