Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Medan Elektromagnetik, Slides of Electronics

Medan Elektromagnetik chapter 1

Typology: Slides

2017/2018

Uploaded on 04/29/2018

rizky-hernar-pratama
rizky-hernar-pratama 🇮🇩

1 document

1 / 23

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
SUWARNO
SUWARNO
ELECTROMAGNETICS I
ELECTROMAGNETICS I
EL 3001
Vector & Coordinate systems
EL 3001
Vector & Coordinate systems
School of Electrical Engineering and Informatics
INSTITUT TEKNOLOGI BANDUNG
2006
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17

Partial preview of the text

Download Medan Elektromagnetik and more Slides Electronics in PDF only on Docsity!

SUWARNOSUWARNO

ELECTROMAGNETICS IELECTROMAGNETICS I

EL 3001

Vector & Coordinate systems

EL 3001

Vector & Coordinate systems

School of Electrical Engineering and Informatics INSTITUT TEKNOLOGI BANDUNG 2006

VektorVektor

Vector quantity : expressed by its magnitude and

direction. A A a A

A

A A a A

A

A

a A 

Unit Vector

VECTOR ANDVECTOR AND VECTOR COMPONENTSVECTOR COMPONENTS

CARTESIAN

2 2 2

ax ay a z A

a^ A x y z

A x y^ z A A A

A A A  

   

A 2 2 2 A   AxAyAz

VECTOR ADDITIONVECTOR ADDITION

C= A + B=B+A

VECTOR SUBSTRACTIONVECTOR SUBSTRACTION

C= A-B= A +(- B)

B
C=A-B
A
-B

VECTOR PRODUCTVECTOR PRODUCT

dot product: the product of magnitude of the two vectors and cosine of the angle between the them.

A.B=B.A =AB cos AB

Projection A on B

Length= A cos AB

2

B

A. B

B

Vektor : cos

B B

AAB

DOT PRODUCTDOT PRODUCT

 

 

 

 

  

 A B

A. B cos

Anglebetween two vectors

A.A A

A.(B C) A.B A.C( )

A.B B.A( )

1 AB

(^22)

A

distributi ve

commutativ e

CROSS PRODUCTCROSS PRODUCT

x y z

x y z

x y z

B B B

A A A

a a a

AxA

  

  

 

AxB

a xa a ;a xa a ;a xa a

0

Ax(B C) AxB AxC (distribut ive)

AxB BxA (anticommut ative)

x y z y z x z x y

TRIPPLE PRODUCTTRIPPLE PRODUCT

x y z

x y z

x y z

C C C

B B B

A A A

C

C C

A.(Bx )

Ax(B.C) no meaning

A.(BxC) meaningful l

Sequenceisimportant!!

A.(Bx ) B.( xA) C.(AxB)

B(A.C)- C(A.B)

Ax(BxC) (AxB) xC

22

2 a 3 a 3 a Unit vectorA a

a.Length A 2 3 3 22 x y z A

2 2 2    

   

50 , 2^ o 22

cos^3 A

A. a cos

b.Anglebetween Adan Y axis

  • 1 y (^1)   

^  

^  ^  

 ^  

   

145 , 1^ o 22 27

cos A B

A. B

cos

c.Anglebetween A and B

  -^1  ^1  ^  

OP sin ( 180 ) 2 , 68

d.DistancefromO to B

3  ^  

A o

COORDINATE SYSTEMS

• Cartesian (x,y,z)

• Cylindrical (z)

• Spherical (r,)

CYLINDRICALCYLINDRICAL

CYLINDRICAL ELEMENTSCYLINDRICAL ELEMENTS