




























































































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
This document delves into the fundamental principles of thermodynamics, focusing on the conservation of energy and the concept of gibbs free energy. It explores the relationship between heat, work, and internal energy, and introduces key thermodynamic variables like enthalpy and entropy. The document also examines the application of these principles to phase transitions and chemical reactions, providing examples and calculations to illustrate the concepts.
Typology: Slides
1 / 164
This page cannot be seen from the preview
Don't miss anything!
Sistema: Dentro del recipiente Alrededores: Fuera del recipiente Proceso reversible: Palrededores=Psistema Sistema: Aislado: no hay intercambio de energia o de masa entre el sistema y los alrededores Cerrado: hay intercambio de energia pero no de masa entre el sistema y los alrededores Paredes rigidas: no hay cambio en volumen en el intercambio de energia; no hay trabajo Adiabatico: no hay intercambio de energia en forma de calor entre el sistema y los alrededores
cinetica
rotacional
vibracional
electronica Estado inicial Pi,Vi,Ti U (^) inicial Estado final Pf,Vf,Tf U (^) final V, T T V
Energia Interna U(V,T) Energia interna U (V,T) ; unidades de julios ; U tiene diferencial exacto DU= U final
Cv=(dU/dT)V (calor especifico; es una medida de la capacidad que tienen las moleculas del sistema en convertir un cambio en temperatura en un cambio en energia) Ui UF
P (bar) V (L) Pi= nRT/V= (2.3 moles)(0.08314 bar.L/(mol.K)(450K)/3.5 L = 24.6 bar Vi=3.5 L Ti= 450 K PF= nRT/V= (2.3 moles)(0.08314 bar.L/(mol.K)(450K)/6.2 L = 13.9bar VF=6.2 L TF= 450 K inicial final w q Ti Tf
P (bar) V (L) Pi= nRT/V= (2.3 moles)(0.08314 bar.L/(mol.K)(450K)/3.5 L = 24.6 bar Vi=3.5 L Ti= 450 K PF= nRT/V= (2.3 moles)(0.08314 bar.L/(mol.K)(450K)/6.2 L = 13.9 bar VF=6.2 L TF= 450 K inicial final
=(dU/dV)T = T(dP/dT)n,v – P = TnR/V – P = nRT/V – nRT/V = 0 y define un gas perfecto Como el gas ideal: P = nRT/V dP/dT = 1nRT1-1/V = nR/V T(dP/dT) = TnR/V Para encontrar Cv: =(dU/dT)V= d(Ucinetica + Uvibracional + Urotacional + Uelectronica + constante)/dT = dUcinetica /dT + d Uvibracional /dT + dUrotacional /dT + d Uelectronica /dT + d(constante)/dT =dUcinetica /dT + d Uvibracional /dT + dUrotacional /dT + d Uelectronica /dT como es Argon (monoatomico) =dUcinetica /dT + d Uelectronica /dT (como la temperatura no es muy alta, d Uelectronica /dT es casi ‘0’ =dUcinetica /dT = d[(1/2)mcrms 2 ]/dT= 1/2d(m3RT/M)/dT = 3/2(m/M)RdT/dT = (3/2)nR que es el Cv de todo gas monoatomico ideal
P (bar) V (L) Pi= nRT/V= (2.3 moles)(0.08314 bar.L/(mol.K)(450K)/3.5 L = 24.6 bar Vi=3.5 L Ti= 450 K PF= nRT/V= (2.3 moles)(0.08314 bar.L/(mol.K)(450K)/6.2 L = 13.9bar VF=6.2 L TF= 450 K inicial final w q Ti Tf
P (bar) V (L) Pi= nRT/V= (2.3 moles)(0.08314 bar.L/(mol.K)(450K)/3.5 L = 24.6 bar Vi=3.5 L Ti= 450 K PF= nRT/V= (2.3 moles)(0.08314 bar.L/(mol.K)(450K)/6.2 L = 13.9bar VF=6.2 L TF= 450 K inicial final w q Ti Tf
Entalpia (H) H= U + PV DH= D (U + PV) = DU + D (PV)= DU + (PfVf – PiVi)= Hf - Hi H (P, T) funcion de estado Diferencial total: dH = (dH/dP)TdP + (dH/dT)PdT dH = Cp dT a presion constante (dP=0) (dH/dT)P=Cp capacidad de calor a presion constante (mientras mas compleja es la molecula Mayor es el valor de Cp. Estado inicial P,V,T H (^) inicial Estado final P,V,T H (^) final P, T T P
Determine el cambio en entropia para la expansion isotermica (dU=0) DS = = SSi Sf = Sf – Si = = = = nRlnV =nRln(Vf/Vi) =2.3 moles (8.314 J/mol.K) ln(6.2 L/3.5 L) =10.9 J/K = Sf – Si > 0 porque Sfinal> Sinicial Vf Vi
P(bar) V(L) Pi=nRT/V= (2.3 moles)(0.08314 L.bar/mol.K)(450 K)/3.5 L = 24.6 bar Vi=3.5 L Ti= 450 K n=2.3 moles Pf=13.9 bar Vf=3.5 L Tf=PV/nR= (13.9 bar)(3.5L)/((2.3moles)(0.08314 L.bar/mol.K)) =254.4 K n=2.3 moles Energia sale en forma de calor y el gas se enfria
Calculo de w y q para proceso a volumen constante w= - ; Vf=Vi y dV= = 0 J Como por la primera ley: DU= q + w q =DU – w= -5610 J – (0 J)= -5610 J sale energia en forma de calor
Determine la entalpia para el proceso a volumen constante DH= DU + D (PV) = -5610 J + (PfVf – PiVi) = -5610 J + [(13.9 bar)(3.5 L) -(24.6 bar)(3.5L)] =-5610 J + (-37.5 L.bar) ; -37.5 L.bar (8.314 J/mol.K/0.08314 L.bar/mol.K)= -3750 J = -5610 J + -3750 J = -9355 J DH= DU + D (PV) = -5610 J + D(nRT) (gas ideal) = -5610 J + nRDT sistema cerrado, n es constante = -5610 J + (2.3 moles)(8.314 J/mol.K)(254.4 – 450) K =-5610 J + -3740 J = - 9355 J